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Abstract. The nature of cell formation is imprecise and uncertain which is

fuzzy rather than crisp and/or random. The binary part—machine incidence

matrix fails in reflecting the real world conditions such as design features, part

demands, machine capacities and routing data. Using the non-binary part-

machine incidence matrix, the relationships between parts and machines can be

represented by fuzzy membership values based on the alternative process plans

and machine capacity limitations. This paper presents an integrated approach

for fuzzy set based part—machine cell formation. The proposed approach em-

ploys a fuzzy binary integer model and is capable of determining process plans of

parts and fuzzy membership values in the non-binary incidence matrix consider-

ing part demands and machine capacities. The proposed approach is illustrated

and tested on a numerical example. Results show that the proposed approach

is valid and capable of reflecting real world conditions.

Key words: Fuzzy set theory; Binary fuzzy goal programming; Alternative

process plans; Cell formation; Cellular manufacturing.

1. Introduction

Cellular Manufacturing (CM) is one of the most innovative manufacturing par-

adigms where the entire manufacturing system is decomposed into several sub-

systems which are called as manufacturing cells. CM has been seen as an effi-

cient environment for the efforts to improve flexibility and efficiency. Increasing

flexibility and efficiency are achieved by transforming batch-type production

to line-type production. In CM, parts with similar processing requirements

are grouped into part families and processed by corresponding machine cells to
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achieve the potential benefits of these similarities. Some benefits of CM include

simplified material flows, faster throughput, reduced setup times, reduced in-

ventory, better control of the shop floor and increased quality (Chu, 1997). The

first step in CM applications is the formation of part families and machine cells.

This step is called as Cell Formation (CF) in the literature. CF problem has

received a great deal of attention and many procedures have been developed to

solve this problem. Chu (1989) classified these procedures into six categories: a)

array-based methods; b) hierarchical methods; c) non-hierarchical methods; d)

mathematical programming formulations; e) graph-theoretic approaches; and

f) other heuristic methods. Detailed survey and analysis of these procedures

can be found in the review papers of Singh (1993), Selim et al. (1998), Sarker

(1999), Yin and Yasuda (2006) and Balakrishnan and Cheng (2007).

Most CF procedures use the binary part-machine incidence matrix which rep-

resents the operational relationships between parts and machines, consists of

0 and 1 values, where = 1 means that part i is processed on machine 

and = 0 otherwise. However, the binary part-machine incidence matrix fails

in reflecting the real world conditions such as design features, part demands,

machine capacities and routing data. In real world applications, alternative

process plans, part demands, machine capacities and other factors can influence

the structure of CF problem. These factors make the nature of CF problem

imprecise and uncertain which is fuzzy rather than crisp and/or random. Fuzzy

set based approaches are appropriate to handle imprecise and uncertain envi-

ronments. According to Xu and Wang (1989) and Chu and Hayya (1991) the

relationships between parts and part families and machines and machine cells

do often not satisfy the binary classification logic. In order to overcome this

issue, fuzzy logic can be applied to CF problem. There are several studies that

adopted the fuzziness to CF problems.

Xu and Wang (1989) used fuzziness to define the relationships between parts

and part families and machines and machine cells. They formed part families

and machine cells based on the design features of parts and employed the fuzzy

c-means algorithm to solve the CF problem. A simplified version of the Xu

and Wang (1989)’s approach was presented by Chu and Hayya (1991) who used

the binary part-machine incidence matrix to represent the production routing

data. Based on the Chu and Hayya (1991)’s approach, fuzzy c-means algorithm

was modified by several researchers including Gindy et al. (1995), Masnata and

Settineri (1997), Susanto et al. (1999), Josien and Liao (2000), Lozano et al.

(2002) and Li et al. (2007).

The above methodologies employing the fuzzy c-means algorithm use the bi-

nary part-machine incidence matrix. However, in practice, a part shape can be

processed by alternative machines with different levels of efficiency and process-

ing times which can be specified by the degree of appropriateness for alternative

machines. On the other hand, a part can be routed through the same ma-

chine for different operations. The specification of alternative machines for an

operation can be useful in choosing other machines in case of lack of capacity

and breakdowns. The non-binary part-machine incidence matrix based on the

fuzzy set theory can be used to represent the relationships between parts and
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machines. The relationships can be expressed by membership values, which are

the degree of appropriateness that a part will visit the corresponding machine

(Leem and Chen, 1996).

To the best knowledge of authors, there are two studies that use the non-binary

incidence matrix based on the fuzzy set theory. Zhang and Wang (1992) used

non-binary part-machine incidence matrix to represent the relationships be-

tween parts and machines with fuzzy membership values. They applied the

non-binary incidence matrix to single linkage and rank order clustering algo-

rithms. Leem and Chen (1996) proposed a similarity coefficient based fuzzy

clustering algorithm which uses non-binary incidence matrix and routing data.

These two studies focus on forming cells with the objective of minimizing the

sum of exceptional values under the assumption of the non-binary incidence

matrix of the problem is known. However, determination of fuzzy membership

values in the non-binary incidence matrix is a crucial issue before solving CF

problem. There is no study dealing the construction of non-binary incidence

matrix before solving CF problem.

The main goal of this study is to develop an integrated approach for fuzzy set

based part—machine cell formation that determines the process plans of parts

considering part demands and machine capacities, calculates the degree of ap-

propriateness between parts and machines, constructs the non-binary incidence

matrix and finally solves the CF problem. The proposed approach consists of

five steps and in the second step; it uses the Binary Fuzzy Goal Programming

(BFGP) methodology developed by Chang (2007) to determine the fuzzy mem-

bership values. To determine the process plans of parts and fuzzy membership

values under the restriction of part demands and limited machine capacities,

a binary integer formulation is developed and solved using the Chang (2007)’s

BFGP approach.

The remainder of the paper is organized as follows: Fuzzy set theory and Chang

(2007)’s BFGP approach are introduced in Section 2. The proposed integrated

approach is presented in Section 3. An illustrative example is solved in Section

4. Consideration of fuzzy machine capacity constraints in the proposed BFGP

model is introduced in Section 5. Concluding remarks are given in Section 6.

2. Fuzzy Set Theory and Binary Fuzzy Goal Programming

2.1. Fuzzy set theory

In classical set theory, the characteristic function of a crisp set assigns a value in

binary terms to each element in the universal set according to a crisp condition

– an element either belongs or does not belong to the set. On the contrary,

fuzzy set theory generalizes this function and permits the gradual assessment of

the membership of elements in relation to a set; assigns values to the elements of

the universal set fall within a specified range, this is determined by the help of

a membership function. Larger values denote higher degrees of set membership

(Klir and Yuan, 1995).
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Fuzzy sets are an extension of classical set theory since, for a certain universe,

each membership function () maps all elements to either 1 or 0, as in the

classical notion. Specifically, a fuzzy set (̃) on a classical set  is defined as

follows (Ross, 1995):

̃ = { (  ())| ∈ }
Fuzzy set theory has been successfully applied to a vide variety of fields such as

manufacturing, computer systems, robotics, electronics, transportation systems,

consumer products, and many other industrial control systems. This study

presents a new application of fuzzy set theory in manufacturing.

2.2. Chang (2007)’s BFGP approach

The concept of Goal Programming (GP) was developed by Charnes and Cooper

(1961). A general GP model for the aspiration level set of the goals  ( = 1,

2, . . . , ) can be formulated as the following achievement function:

(GP)

Minimize
P

=1

¡
+ + −

¢
Subject to ()−  = + − − ,  = 1 2  
 ∈ (F is a feasible set), +  

−
 ≥ 0, = 1 2  ,

where + = max (0 () − )and − = max (0  − ())are referred to as

deviational variables. + is the positive deviation from the target of goal ;

− is the negative deviation from the target of goal (Ignizio, 1982; Winston,

1993).

Fuzzy Goal Programming (FGP) involves applying the fuzzy set theory to GP

and allows decision makers to define “naturally” goal values for his/her decision

making problems such as “somewhat larger than”, “substantially lesser than” or

“around” the value goal . The FGP can be expressed as follows (Narasimhan,

1980):

(FGP)

A solution set  is obtained for FGP that let  be the aspiration level of th

objective,

() & (or() . ),  = 1 2  

Subject to  ∈  , ( is a feasible set)

where() & (.) indicates the th fuzzy goal approximately greater than or
equal to (approximately less than or equal to) the aspiration level . Then,

using Zimmermann (1978), the FGP can be formulated as follows:

Maximize 

Subject to − (() ≤ 0,  = 1 2  )
 ∈ (F is a feasible set)

where  is an additional continuous variable; (())is a membership function

of the th objective and described as follows:
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(()) =

⎧⎨⎩
1 if  () ≥ 

()−
− if  ≤  () ≤  for  () & 

0 if  ≤ 

(()) =

⎧⎨⎩
1 if  () ≤ 

−()
− if  ≤  () ≤  for  () . 

0 if  () ≥ 

where  and  are, respectively, lower and upper limits for the th goal.

In the pioneering paper, Chang (2007) proposed a method for BFGP. The math-

ematical formulation of the BFGP is given below:
() : The function of resource constraints for the th goal  = 1 2  

 : Binary decision variable for the th goal ( = 1 2  ); its behavior

(i.e., 0 or 1) is bounded by ();

(BFGP)

() & (or() . ) = 1 2  

Subject to  ∈  , ( is a feasible set)

 ∈ ()  = 1 2  

Chang (2007) proposed the following model to solve the above BFGP problem:

Minimize − ,  = 1 2  
Subject to () −  + − − + = 1, = 1 2   for () & ,

 − () + − − + = 1  = 1 2  for () . ,

 ∈ (F is a feasible set)

 ∈ ()  = 1 2  

where  =
1

− , 

 = ,  =

1
− and  = 

In the BFGP model given above, the negative deviational variables − vary

between 0 and 1 and indicate the level of achievement of the goals. If the under

deviational variable − equals to 1, it indicates the zero achievement of the

membership value of the goal. If − is 0 then it indicates the full achievement
of the membership value of the goal.

3. The Proposed Approach

The proposed approach is capable of constructing the non-binary part — machine

incidence matrix while determining the parts’ process plans under crisp or fuzzy

capacity limitations. The proposed approach integrates the real world aspects

of CF problem and consists of the following steps:
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Step 0 Read data of the production system that will be switched to CM system.

These data include parts, operations, alternative machines, operation times,

machine capacities and part demand rates.

Step 1 Apply the production data to the BFGP model presented below. Solve

the BFGP model of the problem using Chang (2007)’s approach to obtain the

degree of appropriateness (fuzzy membership values) between parts and ma-

chines.

Step 2 Construct the non-binary incidence matrix including fuzzy membership

values.

Step 3 Solve the CF problem using any suitable algorithm that is able to use

non-binary data to determine the machine cells.

Step 4 Assign each part to a machine cell which gives the largest sum of member-

ship values for the corresponding part (maximum utilization rule). Calculate

the performance measures (number of exceptional values (NEV) and sum of

exceptional values (SEV)).

To obtain the degree of appropriateness (fuzzy membership values) between

parts and machines in Step 1, the following BFGP model is developed:

The BFGP Model

Given the following data;

 set of parts

 set of operations

 set of machines

 completion time of operation  of part  on machine 

 annual capacity of machine 

 annual demand of part 

 setofoperationsofpart

 set of machines that can process operation  of part 

 set of operations of part  that can be processed on machine 

find;

 1, if operation  of part  is allocated to machine ; 0, otherwise

− under achievement of the goal

+ over achievement of the goal

which;

Minimize  =
P
∈

P
∈

−

subject to: X
∈

X
∈

 ≤  ∀ ∈

X
∈

X
∈

 = 1 ∀ ∈  ∀ ∈ 
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X
∈

 . 0 ∀ ∈  ∀ ∈ 

The first constraint of the above model assures that the sum of processing times

of operations allocated to a machine can not exceed the capacity of this machine.

The second constraint assures that each operation is assigned to at least and at

most to one machine.

The last fuzzy constraint is defuzzified using the Chang (2007)’s linearization

method as follows:

 − 
X
∈

 + − − + = 1 ∀ ∈  ∀ ∈ 

The above defuzzified constraint determines the operations allocated to a ma-

chine and calculates the degree of appropriateness (membership values) between

parts and machines according to the assignments. In this constraint, we would

like to make all − be 0, some of which are met and some not because these
fuzzy goals are subject to the first two constraints. Hence, a fuzzy goal can

be fully achieved, level achieved or not achieved completely that is some −
values will be 0, some of which will be between 0 and 1, and some of which

will be 1. Aiming at the minimization of the sum of − values in the objective
function makes such allocations that maximize the number of operation times

of part that can be processed on a machine. The right hand side value defines

the aspiration level of the goal ( = 0). Upper limit of the goal () is the sum

of operation times that can be processed on the corresponding machine related

to the constraint.

For instance, suppose there are three different operations of Part A and these

operations can be processed on three alternative machines. Machine 1 can

process operation 1, 2 and 3 of Part A with the operation times of 5, 4 and 6

minutes respectively. Machine 2 can process operations 1 and 3 of Part A with

the operation times of 4 and 5 minutes respectively. Machine 3 can process

operations 1 of part A with the operation time of 6 minutes. Fuzzy constraints

for Part A can be expressed as follows:

Fuzzy equations for Part A:

5111 + 4121 + 6131 . 0 (fuzzy constraint for machine 1)

4112 + 5132 . 0 (fuzzy constraint for machine 2)

6113 . 0 (fuzzy constraint for machine3)

These fuzzy equations are defuzzified using Chang (2007)’s linearization method.

For example, fuzzy equation for machine 1 is defuzzified as follows:

− 1
15
(5111 + 4121 + 6131) + −11 − +11 = 0

−033111 − 027121 − 04131 + −11 − +11 = 0

Defuzzified equations for Part A:
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−033111−027121−04131+
−
11−+11= 0 (defuzzified constraint for machine 1)

−044112−056132+
−
12−+12= 0 (defuzzified constraint for machine 2)

−113+
−
13−+13= 0 (defuzzified constraint for machine 3)

If all operations of Part A that can be operated on machine 1 are allocated to

machine 1 then the negative deviational variable −11 will be 1. If no operation
is assigned then −11 will be 0. The value of 

−
11 is depended on the amount of

work allocated to the machine 1. Minimizing the sum of −11 + −12 + −13forces
model to assign as much as operations of Part A to the minimum number of

machines. For this example, the minimum value of the sum of −11+ −12+ −13 is
1. This value is obtained when all operations of Part A are allocated to machine

1. Thus, no operation of Part A will be allocated to machines 2 and 3 and both

−12 and −13 will be 0.

4. Illustrative Example

In this section, in order to demonstrate the validity and effectiveness of the

proposed approach, an illustrative example is presented. Suppose there are 9

different parts which have a total of 12 different operations that can be processed

on some of 7 alternative machines. The annual demands of parts are supposed as

follows: 1 =2,000, 2 =3,000, 3 =5,000, 4 =2,000, 5 =4,000, 6 =3,000,

7 =5,000, 8 =1,000 and 9 =6,000 units/year.

The part-operation relationship matrix shows the operations of parts and is

assumed as given in Figure1 below:

Figure 1. Example part-operation relationship matrix
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The operations of parts can be processed on different machines with different

levels of processing times. The operations of parts and their processing times

(minutes) on alternative machines are given in Appendix. Annual capacities of

machines are assumed to be equal and 96 000 minutes/year.

Solution:

The step-by-step solution of the example problem is given below:

Step 0 Read the above production data.

Step 1 Apply the above example to the proposed BFGP formulation given in

Section 3 and solve the model.

The example problem is solved using LINDO (Schrage, 2002) and the objective

function value is found as 13.19. In the optimal solution, allocations of opera-

tions (where=1) obtained and the Annual Work Loads (AWL) of machines

based on the allocations are given in Figure 2.

Figure 2. Operations of parts allocated to machines

Figure 2 shows the process plans of parts. According to Figure 2, for example,

part 1 will be processed on machine 1 for operations 4, 7, and 12; and will be

processed machine 3 for its operation 1.

In the optimal solution, the negative deviational variables (part-machine appro-

priateness values) are found as follows: −11 =1, 
−
13 = 0.28, −25 =1, 

−
31 = 1,

−33 =1, 
−
43 =0.58, 

−
44 =1, 

−
52 =1, 

−
55 =1, 

−
57 =0.33, 

−
61 =1, 

−
63 =0.43, 

−
73

=0.17 −75 =0.4, 
−
76=1, 

−
84=1, 

−
97 =1, and all the others are 0.

As mentioned above, part 1 will be processed on machine 1 and machine 3.

According to the part-machine membership values obtained for part 1, it belongs

to the machine cell to which machine 1 is assigned, with the membership value 1.

On the other hand, it belongs to the machine cell to which machine 3 is assigned,
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with the membership value 0.28. Therefore, it can be said that assigning part

1 and machine 1 to the same cell is preferred more than that of machine 3.

Step 2 Construct the non-binary incidence matrix. Using the membership values

obtained in the previous step, the non-binary part-machine incidence matrix is

constructed as shown in Figure 3.

Figure 3. The non-binary incidence matrix

Step 3 Solve the CF problem using any suitable algorithm to determine the

machine cells. We employed the Fuzzy ART neural network algorithm of Suresh

and Kaparthi (1994) to solve the CF problem. The Fuzzy ART neural network

approach yielded two machine cells. The machines 1, 3 and 4 are assigned to

cell 1 while the others are assigned to cell 2.

Step 4 Assign each part to a machine cell which gives the largest sum of mem-

bership values for the corresponding part. After assigning parts to the cells with

maximum utilization rule, the arranged incidence matrix is as given in Figure

4:

Figure 4. The arranged non-binary incidence matrix
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The number of exceptional values (NEV) and the sum of exceptional values

(SEV) are the measures of grouping efficiency in non-binary CF problems (Leem

and Chen, 1996). For this example, the NEV value is 1 and the SEV value is

0.17. These measures show that the grouping efficiency is satisfying.

5. Considering Fuzziness in Machine Capacities

When using the proposed approach, we may not obtain feasible solutions due to

the lack of machine capacity for some machines. However, in practice, to tackle

this problem, we can consider machine capacities as fuzzy parameters (goals)

and modify the capacity constraint of the proposed BFGP model as follows:

With the following additional notation;

 lower limit for the capacity of machine 

 upper limit for the capacity of machine 
The fuzzy capacity constraint will be;X

∈

X
∈

 ≤∼  ∀ ∈

The fuzzy capacity constraint is defuzzified using the Chang (2007)’s lineariza-

tion method as follows:

 − 
X
∈

X
∈

 + − − + = 1 ∀ ∈

Then objective function of the model becomes as follows:

Minimize  =
P
∈

P
∈

− + −

The membership function of machine capacity is depicted in Figure 5.

Figure 5. The membership function of machine capacity

For the example presented in the previous section, the following set of part de-

mands requires using over capacities. 1=3,000,2=7,000,3=5,000,4=6,000,

5=4,000, 6=7,000, 7=7,000, 8=8,000, and 9=5,000 units/year.
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The lower limit of the annual machine capacities () is assumed 96,000 minutes/year

and that of upper limit () is assumed 140,000 minutes/year. Then, the exam-

ple problem with fuzzy capacities is solved using LINDO (Schrage, 2002) and

the objective function value is found as 17.90. In the optimal solution, operation

allocations (where=1) obtained, the AWL values of machines based on the

allocations and the values of deviational variables are given in Figure 6.

Figure 6. Operations of parts allocated to machines with fuzzy capacities

As shown in Figure 6, except from machine 2, the workloads of machines exceed

the lower limit of capacity (96,000). The fuzzy goal for the capacity of machine

2 is fully achieved, so the value of −2 is 0. This means that the satisfaction

level of this goal is 1 (full achievement). On the other hand, the fuzzy goals for

other machines are partially achieved or not achieved completely. For example,

the utilization of machine 3 capacity is 132,000 minutes that exceeds the lower

limit by 36,000 minutes hence the satisfaction level is 0.181 (which is calculated

as 1 —−3 ).

In the optimal solution, the negative deviational variables are found as follows:

−11 = 060 −12 = 050 −13 = 036 −25 = 055 −26 = 062 −33 = 1 −37 = 1
−41 = 046 −43 = 042 −44 = 033 −46 = 046 −47 = 033 −52 = 1
−55 = 057 −57 = 1 −61 = 055 −62 = 1 −63 = 043 −73 = 017 −75 = 073
−76 = 042 −82 = 1 −84 = 071 −97 = 1and all the others are 0.

Using the same machine cell assignments in the previous solution, parts can be

assigned to the machine cells according to the maximum utilization rule and the

arranged non-binary matrix is obtained as given in Figure 7.
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Figure 7. The arranged non-binary incidence matrix with fuzzy capacities

The performance measures of this solution is calculated as NEV = 8 and SEV

= 4.15. If the initial non-binary part-machine incidence matrix is resolved using

the Fuzzy ART neural network and new machine cell assignments are obtained,

the grouping performance will probably be improved. When compared the

results of crisp capacities and fuzzy capacities, it can be seen that more negative

deviational variables took value in fuzzy capacity condition.

6. Conclusions

The cell formation problem is generally can be considered as fuzzy rather than

crisp and/or random. Most approaches developed for this problem use the

binary part—machine incidence matrix which fails in reflecting the problem spe-

cific conditions such as design features, part demands, machine capacities and

routing data. Although the non-binary part-machine incidence matrix is more

successful in reflecting the cell formation problem, it is rarely used in the liter-

ature.

In this paper, we investigate the cell formation problem with non-binary part-

machine matrix by considering alternative process plans and machine capacities

under fuzzy environment. A binary fuzzy goal programming is demonstrated

and a four steped algorithm is developed to obtain a solution for this type of

fuzzy environment. In order to show the ability of the proposed approach, an

illustrative example is tried to solve by taking into acoount alternative process

plans. Results show that the proposed approach is valid and capable of reflecting

real world conditions. The extension of the proposed approach using stochastic

demand rates can be considered as further research.
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Appendix. Operation data for the illustrative example

Table A1. Operation data for part 1 (=1)

Table A2. Operation Data for Part 2 (=2)
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Table A3. Operation Data for Part 3 (=3)

Table A4. Operation Data for Part 4 (=4)

Table A5. Operation Data for Part 5 (=5)
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Table A6. Operation Data for Part 6 (=6)

Table A7. Operation Data for Part 7 (=7)

Table A8. Operation Data for Part 8 (=8)

Table A9. Operation Data for Part 9 (=9)
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