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Summary. In this article we take the nonhomogeneous Vekua equation

 =  + +    ∈ 

subject to the conditions

Re |=    ∈  ()

Im (0) = 0  0 ∈ 

where   ∈  ()    2. We want to derive the conditions under which

the solution exists in Wiener-type domains.

Key words: Generalized analytic functions, solutions in Wiener sense, Wiener-

type domain, capacity, non-homogeneous Vekua equations.

Classification categories: 30 G 20, 36 J 40, 35 J 60.

1. Introduction

Let us consider the boundary value problem

(1.1)  =  + +    ∈ 

(1.2) Re |=  ()   ∈ 

(1.3) Im (0) = 0  0 ∈ 
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in a domain  ⊂ C with non-smooth boundary where   ∈  ()   

2  ∈  () and 0 is a real constant. The differential equation (1.1) is

equivalent to the real system of equations

(1.4)
 −  =  ( )+  ( )  +  ( )

 +  =  ( )+  ( )  +  ( )

if we take  = +  , where

(1.5)

4 = + +  (− )

4 = − +  (+ )

2 =  +  

On the other hand, if   ∈ 2 ()        ∈ 1 () and  = − then
we may eliminate, for example , from the system (1.4) to find

(1.6)  =  ( )

where

(1.7)  = ∆+  ( )



+  ( )




+  ( ) 

∆ =
2

2
+

2

2

and

 ( ) = ∇ · ( ) :=  +  

Thus we have deduced the boundary value problem

(1.8)
 =  ( )

 |=    ∈  () 

in the bounded domain  ⊂ C where  +  ∈ . We assume there exist

constants 1 2 such that the coefficients of  satisfy the inequalities

(1.9) | ( )|  | ( )| 6 1


 − 2
+1

6  ( ) 6 0

where

(1.10)  =

q
(− )

2
+ ( − )

2
 ( ) ∈  ( ) 6∈ 

and 0 6   1 .

Definition 1.1: The real valued function  ∈ 2 () satisfying the inequality

 > 0 (or  6 0) is called the subsolution (or supersolution) of  = 0 where
 is given by (1.7).
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Let   ⊂ C be Borel measurable sets,  be the distance defined by (1.10)

where  = +  ∈   = +  ∈ . LetM be the set of all measures defined

on the -algebra of all subsets of . Let us define also the real valued function

(1.11)  ( ) :=
h
log
³


´i
   

In (1.11),  ∈ R+ is a constant and  is determined so that  > 0. Let us

define the subset ofM by

M1 :=

⎧⎨⎩ ∈M :

ZZ


 ( )  () 6 1

⎫⎬⎭ 

Definition 1.2: The logarithmic ( )-capacity of  with respect to  is de-

fined by

(1.12) Cap() := sup
∈M1

 () 

Now, consider the boundary value problem

(1.13)
 = 0   ∈ 

 |=    ∈  ()  0    1

¾
where  ⊂ C is a bounded domain with non-smooth boundary. Let us choose
the set {}∞1 of domains with smooth boundaries, such that

(1.14)  ⊂ +1 ⊂   = 1 2     lim
→∞

 = 

Thus we may define the boundary value problem

(1.15)
 = 0   ∈ 

 |
= Φ0 ()  Φ0 ∈  ()   = 1 2   

in which has smooth boundary, where Φ0 is the restriction to the boundary

 of the Hölder continuous extension Φ0 of  into . This problem has a

unique solution  (see for example [2]). So we obtain the set of solutions

{}∞1 .

Definition 1.3: If

lim
→∞

 = 

exists, then  is called the generalized solution of (1.13) in Wiener sense.

Definition 1.4: Let 0 ∈  be a fixed point and  be the generalized solution

of (1.13) in Wiener sense. If for each  ∈  (),

lim
→0

 () =  (0)

73



holds, then 0 is called a regular point. Otherwise it is called as an irregular

point of .

Definition 1.5 A domain is of Wiener-type if every point on its boundary is

regular in Wiener sense.

Throughout the paper, we assume that the coefficients of the operator  satisfies

the inequalities (1.9),  is defined by (1.10) and  (0) represents the ball with

center 0 and radius .

Now we will recall

Theorem 1.1: [3]Let us assume that the solution  of  = 0 in a bounded

domain  is continuous in \ {0}, 0 ∈ , bounded in  and vanishes on

∩0
(0). Let  :=  (0) \ and Cap()4− :=  for 0  4

− 

0  = 00+1    . If
P∞

=0
 is divergent, then 0 ∈  is a regular

point in the sense of Wiener.

Definition 1.6: Let 0 ∈  be a fixed point and  be a subsolution defined

in any 0 ⊂ , continuous in 0 and satisfying  ()  1 for all  ∈ 0. If there
exists a real valued function Ψ such that

() Ψ ()  0 for 0    0 and lim→0Ψ () = 0

()  |∩16 Ψ () whenever  |0∩6 0

where  and 1 are two neighborhoods of 0, then 0 is called as Ψ-regular point

for the boundary value problem (1.13).

Note It has been proved previously [3] that if 0 ∈  is a Ψ-regular point,

than it is also regular in Wiener sense.

2.Existence of the real part of solutions

We will investigate the necessary conditions for the Dirichlet problem (1.8) to

have a solution, when  ∈  (),  real valued,   2. This problem may be

decomposed into two new problems

(2.1)
 = 0   ∈ 

 |=    ∈  () ;

)

and

(2.2)
 =    ∈ 

 |= 0

)

to give the solution as  =  + .

The problem (2.1) has been investigated previously [3] in Wiener-type do-

mains. Hence we will deal with (2.2), only. If  were a continuous and bounded
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function in a domain  with smooth boundary, then the problem (2.2) would

have solution ∈ 2 ()∩ ¡¢. Otherwise, the classical maximum principle
does not hold in general. But it is known that [3], if  ∈ () ()  2   () 
2

, then the solutions satisfy

(2.3) sup


| | 6 3 (meas)
1
2
− 1
() kk()() 

Now we will discuss the generalized solutions of (2.2) in Wiener sense, in the

cases where  is a bounded or unbounded function in .

Case I: H is continuous and bounded: First of all, let us consider the domain

 = { ∈  :   dist ( )} 
Let us choose the subdomains {}∞1 with smooth boundaries such that

 ⊂ +1   ⊂   lim
→∞

 = 

So, we may define the boundary value problems

(2.4)
 =    ∈ 

 = 0   ∈   = 1 2    

Let us define functions

Φ+ := 2Re [(1−)(−0)]

Φ− := −2Re [(1−)(−0)]

where 0 ∈  and lim→∞ 0 = 0 ∈ . It is trivial that

lim→∞Φ+ = 2Re [(1−)(−0)] =: Φ+

lim→∞Φ− = −2Re [(1−)(−0)] =: Φ−
 is the diameter of  and  is a real constant to be chosen. By use of (1.9)

and the fact that   , we can find

(2.5)
Φ+ > 4

Φ− 6 −4

)

where 4 may depend on  1 2. On the other hand, let 
+
 and − be

the classical solutions of the boundary value problems

(2.6)
+

 = 1
2
   ∈ 

+
 = Φ+   ∈ 

)
and

(2.7)
− = 1

2
   ∈ 

− = Φ−   ∈ 

)
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respectively. Since  have smooth boundary, both of these problems have

unique solutions. Utilizing (2.5), we find


¡
+

 −Φ+
¢
6 1

2
 − 4

We know that  is bounded in :

| ()| 6    ∈ 

Thus


¡
+

 −Φ+
¢
6 1

2
 − 4

Choosing

  max

½
1



24

¾
we get


¡
+

 −Φ+
¢
6 0

in . Taking into account that

+
 ()−Φ+ () = 0   ∈ 

the classical maximum principle leads to

+
 () > Φ+ ()

in . Moreover


¡
+

 −+
−1

¢
= 0   ∈ −1

and

+
 ()−+

−1 () > 0   ∈ −1

Then using the maximum principle in −1 we find

+
 () >+

−1 ()   ∈ −1

Hence the sequence
©
+



ª∞
1
is non-decreasing. This sequence is bounded since

there exists  ∈ R such that

sup


¯̄
+

 ()
¯̄
≤ 5

∙
max


1

2
| ()|+max



¯̄
Φ+ ()

¯̄¸
≤ 1

2
5 + 6 ≡ 

So the sequence
©
+



ª∞
1
is convergent in every domain ,   0. In a similar

way, it is easy to see that the sequence
©
−

ª∞
1
is also convergent in . On

the other hand, if we define

 :=+
 +− 
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then  are solutions of the boundary value problems

(2.8)  =    ∈ 

 = 0   ∈    = 1 2    

Because of its construction, the sequence
©
+



ª∞
1
is convergent. That is, there

exists  defined in  such that

lim
→∞

 () = () 

It is well-known by the Schauder interior estimate that [2] the solutions ,

 = 1 2    are equicontinuous together with their first and second derivatives.

This means that we have a subsequence {}∞1 which can be substituted in

(2.8). Taking the limit as  →∞ we find

(2.9)
 =    ∈ 

 = 0   ∈ 

Definition 2.1: If  is continuous and bounded in , then the limiting

function  is called generalized solution of (2.9).

Case II:  ∈  (), 2    2

, 0    1 : In this case, the generalized

solution in Wiener sense cannot be obtained as in Case I.

First of all, let us decompose  as

 = + +−

where

+ () = max
∈

( ()  0)  − () = min
∈

( ()  0) 

Now, let us consider the boundary value problems

(2.10)
1 = − ()   ∈ 

1 () = 0   ∈ 

)

and

(2.11)
2 = + ()   ∈ 

2 () = 0   ∈ 

)

Thus if the problems (2.10) and (2.11) have generalized solutions in Wiener

sense, then the generalized solution of (2.2) in the sense of Wiener is represented

by

 () =1 () +2 () 

First, let us investigate the existence of the solution of (2.10).
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We know by the maximum principle that if − () 6 0, then 1 > 0. Now, let
us define

(2.12) − () =

(
− ()  − ()  −
−  − () 6 −

for  = 1 2    and the auxiliary boundary value problems

(2.13)
 ∗ () = − ()   ∈ 

 ∗ () = 0   ∈    = 1 2    

)

Let  ∗ ,  = 1 2    be the generalized solutions of (2.13) in Wiener sense.

Thus, from (2.12) and (2.13) we have


¡
 ∗+1 ()− ∗ ()

¢
= −+1 ()−− () 6 0   ∈ 

 ∗+1 ()− ∗ () = 0   ∈    = 1 2    

Employing the classical maximum principle in  we get

 ∗+1 () > ∗ () 

Thus the sequence
©
 ∗

ª
is non-decreasing. So, there exists a constant 7 such

that the inequality

sup
∈

¯̄
 ∗ ()

¯̄
6 7 ||

1
2
− 1
()

°°− °°()()
6 7 ||

1
2
− 1
() kk()() (2.14)

holds, where

|| := meas

Since the right-hand side of (2.14) is independent of ,
©
 ∗

ª∞
1
is bounded.

Hence the limit

lim
→∞

 ∗ () =1 ()

exists. This limiting function 1 is the generalized solution of the boundary

value problem (2.10) in Wiener sense.

To identify the generalized solution of (2.11) in Wiener sense, we will first define

the boundary value problems

(2.15)
 ∗∗ () = +

 ()   ∈ 

 ∗∗ = 0   ∈    = 1 2   

)

where

+
 () =

(
+ ()  + ()  

  + () > 
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Using the same technique given above for the solutions of (2.13), we can show

that the sequence
©
 ∗∗

ª∞
1
of solutions of (2.15) is convergent. Thus the limit

lim
→∞

 ∗∗ () =2 ()

exists in . 2 is the generalized solution of (2.11) in Wiener sense.

Since the boundary value problem (2.2) is linear

 () =1 () +2 ()

is the generalized solution of it, in the sense of Wiener. This enables us to find

the generalized solution of (1.8) in Wiener sense. Substituting the solution

 () =  () + ()

in the system of equations (1.4), we find

 =  ( )+  ( )  +  − 

 = − ( )−  ( )  −  + 

It is easy to observe that this system is of exact differentiable type. Imposing

the condition

Im (0) =  (0 0) = 0  0 ∈ 

we find a unique solution. Combining  ( ) and  ( ) as

 () =  ( ) +  ( ) 

we obtain the existence of the generalized solution of (1.1)-(1.3) in Wiener sense.

3.The Representation of the Solution by  Operators:

It is well known [4] that the solution of the boundary value problem defined by

(1.1)-(1.3) in a domain  with smooth boundary is given by

 () = Φ () +  ( + +  ) ()

where Φ () is a holomorphic function satisfying the conditions

ReΦ () =  ()−Re ( + +  ) ()   ∈ 

ImΦ (0) = 0 − Im ( + +  ) (0)  0 ∈ 

if

() () := − 1


ZZ


 ()

 − 
    =  +    ∈  ()

is contractive. In order to extend this result to the domains with non-smooth

boundary, we will follow the technique given in [1]. First let us take the set of

domains {}∞1 with smooth boundaries, subject to the conditions defined by
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(1.14). Let the extension of , as a Hölder continuous function into the domain

, be . Then we may define the boundary value problems

(3.1)




=  + +    ∈ 

Re () |
=  () |

:= 
()

Im (0) = 0  0 ∈    = 1 2   

in ,  = 1 2    with smooth boundaries where

lim
→∞

0 = 0  lim
→∞

0 = 0

Thus the solutions of (3.1) are represented by

(3.2)  () = Φ () + 
( + +  ) ()   = 1 2   

if

(3.3)
h
kk

() + kk()

i
k

k
() 6

1

1 + 1

where 1 is a constant, k·k() is the usual norm defined in 
¡


¢
and

Φ () is a holomorphic function satisfying proper boundary conditions [4].

Hence we have a sequence of functions {}∞1 as the solutions of the boundary

value problem (3.1) in (). Now we will show that {}∞1 is a Cauchy

sequence.

Theorem 3.1: Under the conditions of (3.3), the solution sequence {}∞1 of

the problem (3.1) is a Cauchy sequence in ()

Proof. It is evident that   ∈ 
¡


¢
for   . If we call

 =  + + 

then we get

k − k() 6 kΦ −Φk() + k
()− 

()k()

6 kΦ −Φk() + k
()− 

()k()

+ k
()− 

()k()

6 kΦ −Φk() + k
k
() k −k()

+
°°\

°°
()

kk()

6 kΦ −Φk() + k
k
()

h
kk

() +

kk
()

i
k − k() +

°°\

°°
()

kk() 
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This inequality may be written as

k − k() 6
kΦ −Φk()

1− k
k
()

h
kk

() + kk()

i

+

°°\

°°
()

kk()

1− k
k
()

h
kk

() + kk()

i 

where denominator is away from zero by (3.3). So {}∞1 is a Cauchy sequence.

Corollary 3.1:Thus the limit

lim
→∞

 = 

exists. If we take the limit of the problem (3.1) as →∞, we see that

lim
→∞

 () = lim
→∞

[Φ () + 
( + +  ) ()]

or

 () = Φ () +  ( + +  ) ()

is the representation of the solution of (1.1)-(1.3) is a Wiener-type domain.
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1. A. O. ÇELEBİ and K. KOCA. A boundary value problem for generalized analytic

functions in Wiener-type domains. Complex Variables, 48 (6): 513—526, 2003.

2. D. GILBARG and N. S. TRUDINGER. Elliptic Partial Differential Equations of

Second Order. Springer-Verlag, Berlin, Heidelberg, New York, 1983

3. K. KOCA and A. A. NOVRUZOV. Ein singuläres Randwertproblem für elliptische

Differ-entialgleichungen in der Ebene. The Scientific Annals of AL. I. CUZA University

of IASI, Tom. XLVI f. 2: 373—392, 2000.

4. W. TUTSCHKE. Partielle Differentialgleichungen, klassische, funktional-analytische

und komplexe Methoden, volume Band 27. Tuebner Texte zur Math., 1983.

81


