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Summary. A stress-strength model defines life of a component which has

strength and is subjected to stress  In this paper, we consider the estimation

problem of  =  (  ) when ˜ ( 1) and  ˜ ( 2)

are independent with  known.  can be considered to be the reliability of a

system and is known to be stress-strength reliability. The maximum likelihood

estimate of  is derived and various distributional properties of this estimator

is discussed. Exact and asymptotic confidence intervals for  are constructed.

Also a simulation study is performed to investigate the coverage probabilities of

these intervals.
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1. Introduction

The term "stress-strength reliability" in statistical literature typically refers to

the quantity  (  ). This term states the reliability of a system of strength

 subjected to a stress  The system fails if the applied stress exceeds its

strength. Thus the quantity is known to be the stress-strength reliability of

the system and is typically denoted by  . In other words, the stress-strength

reliability of the system is the probability that the system is strong enough

to overcome the stress imposed on it. The problem arises in some fields, for

example, in biometry,  represents a patient’s remaining years of life if treated

with drug  and  represents the patient’s remaining years of life if treated

1This study is a part of philosophy of doctora (Ph.D) thesis titled "Estimation of System

Reliability for some Distributions in Stress-Strength Models" , Buğra Saraçoğlu, submitted

by Selcuk University Graduate School of Natural and Applied Sciences, 2007.
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with drug . If the choice is left to the patient, person’s deliberations will center

on whether  (  ) is less than or greater than 1/2 (Ali and Woo, 2005a,

2005b).

Some authors have considered different choices for stress and strength distrib-

utions. The stress-strength reliability and it’s estimation problems for several

distributions are discussed in the works of Church and Harris (1970) , Downton

(1973), Woodward and Kelley (1977), for the family of normal distributions,

Tong (1974, 1975a, 1975b), Sathe and Shah (1981), Chao (1982) for the family

of exponential distributions, Beg and Singh (1979) for the family of pareto dis-

tributions, Awad and Gharraf (1986) for the family of Burr XII distributions,

Constantine et al. (1986), and Ismail et al. (1986) for the family of gamma dis-

tributions, McCool (1991), Kundu and Gupta (2006) for the family of weibull

distributions, Surles and Padgett (1998, 2001), Raqab and Kundu (2005) for

the family of burr X distributions, Ali and Woo (2005a, 2005b) for the family

of levy and p-dimensional rayleigh distributions„ Kundu and Gupta (2005) for

the family of generalized exponential distributions and Mokhlis (2005) for the

family of burr III distributions. Recently, Kotz et al. (2003) have presented a

review of all methods and results on the stress-strength model in the last four

decades.

This paper is organized as follows; In Section 2, the stress-strength reliability is

derived underlying The  distribution. In Section 3, maximum likeli-

hood estimate (MLE) of the stress-strength reliability () is obtained and vari-

ous distributional properties of this estimator is discussed. Also, mean squares

error (MSE) of the these estimates are compared. In Section 4, exact and as-

ymptotic confidence intervals for the stress-strength reliability are constructed

and a simulation study is performed to investigate the coverage probabilities of

these intervals as well.

2. Stress-Strength Reliability

Let  be the strength of a system and  be the stress acting on it.  and 

are the random variables from  with parameters (1 1) and (2 2)

respectively. That is, the probability density functions and the cumulative dis-

tribution functions of  and  are, respectively

(2.1)  () = 1 exp (1) exp
©−1−11 [exp (1)− 1]

ª
   0 1  0 1  0

(2.2)  () = 1− exp©−1−11 [exp (1)− 1]
ª

and

(2.3)  () = 2 exp (2) exp
©−2−12 [exp (2)− 1]

ª
   0 2  0 2  0
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(2.4)  () = 1− exp©−2−12 [exp (2)− 1]
ª

where 1 and 2 are known parameters and also 1 and 2 are unknown para-

meters. Then  is

 =  (  ) =

Z ∞
0

 (  )  () 

=

∞Z
0

∙
1− exp

½
−2
2
(2 − 1)

¾¸
1

1 exp

½
−1
1
(1 − 1)

¾


= 1− exp
½
1

1
+

2

2

¾ ∞Z
11

exp

(
−2
2

µ
1

1

¶21)
−

(2.5)

If we write the identity given by Eq.(2.6) in the right hand side of the integral

given by Eq.(2.5)

(2.6) exp

(
−2
2

µ
1

1

¶21)
=

∞X
=0

(−1) (22) (11)21
!



The final form of Eq.(2.5) is rearranged as follows;

 = 1− exp
½
1

1
+

2

2

¾

×
∞X
=0

(−1) (22) (11)21
!

(2.7)

×

⎡⎢⎣Γ (21 + 1)− 11Z
0

(21)−

⎤⎥⎦
where Γ () is a gamma function. If we write the identity given by Eq.(2.8) in

the right hand side of the integral given by Eq.(2.7),

(2.8) − =
∞X
=0

(−1)
!
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then Eq.(2.7) is rearranged as follows;

 = 1− exp {11 + 22}

×
∞X
=0

(−1) (22) (11)21
!

(2.9)

×
"
Γ ((21) + 1)−

∞X
=0

(−1)(11)(21)++1
((21) + + 1) !

#

If 1 = 2 =  then  is in the form given as follows;

 =  (  ) =

∞Z
0

 (  )  () 

=

∞Z
0

∙
1− exp

½
−2


( − 1)

¾¸
1

 exp

½
−1


( − 1)

¾


=
2

1 + 2


(2.10)

3. Estimation of Stress-Strength Reliability

3.1. Maximum Likelihood Estimation

Let 12     and 1 2      be the two independent random sam-

ples taken from the  distribution with parameters ( 1) and ( 2)

respectively and let  be known. Then, likelihood and log-likelihood function

based on the above samples are given as follows;

 (θ;xy) = 1 exp

Ã


X
=1



!
exp

Ã
−1



X
=1

( − 1)
!
2

exp

Ã


X
=1



!
× exp

"
−2



X
=1

( − 1)
#(3.1)

and
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 (θ;xy) =  log 1 + 

X
=1

 − 1



X
=1

( − 1)

+ log 2 + 

X
=1

 − 2



X
=1

( − 1)

(3.2)

respectively, where θ =(1 2) is the parameter vector and subsequently the

associated gradients are found as follows;

 (θ;xy)

1
=



1
− 1



X
=1

( − 1) = 0

 (θ;xy)

2
=



2
− 1



X
=1

( − 1) = 0

Hence MLEs of the parameters 1 and 2 are obtained by

̂1 =


−1
P

=1 (


 − 1)

(3.3)

̂2 =


−1
P

=1 (

 − 1)

(3.4)

respectively. Using the invariance properties of the maximum likelihood esti-

mation, b1 that is the MLE of the  is obtained as follows;

(3.5) b1 = b2b1 + b2 
Let  = −1

P
=1 (


 − 1) and  = −1

P
=1 (


 − 1)  Then b1 is calcu-

lated by

(3.6) b1 = b2b1 + b2 = 

 +


The following method can be used to find the distribution of b1 Let  = 

and we consider the below transformation
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 :

⎧⎨⎩ 1 =


 +
 = 

; then

(
 = 

 =
1

(1− 1)

and its jacobian is as follows;

 =

¯̄̄̄
¯̄  (1− 1) + 1

2 (1− 1)
2

1 (1− 1)

2 (1− 1)
2

0 −2

¯̄̄̄
¯̄ = − 

3 (1− 1)
2

so that | | = 
n
3 (1− 1)

2
o
 Since    0 implies 1   0 we have

1
= 

µ
1

(1− 1)


¶
| |

= 

µ
1

(1− 1)

¶
 () | |

=
1


2 

−11

Γ ()Γ () (1− 1)
+1

1

++1
exp

½
− 11

(1− 1)
− 2



¾


with   0 and 0  1  1 Then the distribution of b1can be found as follows;
1

(1) =
1


2 

−11

Γ ()Γ () (1− 1)
+1

∞Z
0

1

++1
exp

½
− 11

(1− 1)
− 2



¾


=
Γ (+)

Γ ()Γ ()

µ
1

2

¶
−11 (1− 1)

−1

×
½
1− 1

µ
1− 1

2

¶¾−(+)(3.7)

with 0  1  1 For   0, 
 moment of b1 is given by


³ b

1

´
=

∞Z
0

1 1
(1)

=
Γ (+ )Γ(+)

Γ (++ )Γ ()

µ
1

2

¶

× 21

µ
(+  +)  ++  1− 1

2

¶


(3.8)
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where  (nd ) is the generalized hypergeometric function. This function

is also known as Barnes’s extended hypergeometric function. The definition of

(nd ) is as follows;

(3.9) (nd ) =
∞P
=0


Q
=1

Γ ( + )Γ−1 ()

Γ ( + 1)
Q

=1

Γ ( + )Γ−1 ()


where n = [1 2  ],  is the number of operands of n, d = [1 2  ]

and  is the number of operands of d. The above generalized hypergeometric

function is quickly evaluated and readily available in standard software pro-

grammes such as Maple. For more details see Gradshteyn et al. (2000). By

replacing  = 1 in Eq.(3.8) the expected value of b1 can be found as follows;
(3.10)

( b1) = 

(+)

µ
1

2

¶
21

µ
(+ 1 +)  ++ 1 1− 1

2

¶


Fig. 1 shows the graphs of bias of the MLE as a function of the true reliability 

for these cases: (a) =5, =3, (b) =3, =5, (c) =10, =10 and (d) =15,

=15. MLE has relatively more bias for lower reliability values than higher

ones when    and MLE has relatively more bias for higher reliability values

than lower ones when   . Also bias of the MLE tends to decrease in the

case that the total sample size, + increases.

Fig. 1.The Bias curves of the MLE, for (a) = 5,  = 3,

(b) = 3,  = 5, (c) = 10,  = 10 and (d) = 15,  = 15

Using Eq. (3.8), the variance of the b1 can be obtained as follows;
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 
³ b1´

= 
³ b21´− ³ ³ b1´´2

=
 (+ 1)

(+) (++ 1)

µ
1

2

¶
× 21

µ
(+ 2 +)  ++ 2 1− 1

2

¶
−
½



(+)

µ
1

2

¶

21

µ
(+ 1 +)  ++ 1 1− 1

2

¶¾2(3.11)

4. Confidence intervals

4.1. Exact confidence interval

Let 12     and 1 2      be the two independent random sam-

ples taken from the  distribution with parameters ( 1) and ( 2)

respectively and let  be known. Recall that  = −1
P

=1 (


 − 1) and
 = −1

P
=1 (


 − 1) are independent gamma random variables with para-

meters ( 1) and ( 2) respectively. Also it can be easily shown that 21

and 22 are two independent chi-square random variables with 2 and 2

degrees of freedom respectively. Thus b1 in Eq.(3.5) could be rewritten as³
1 + b1b2´−1  Using Eq.s(2.10), (3.3), (3.4) and (3.6) the MLE of 1is ob-
tained as follows;

(4.1) b1 = µ1 + 1

2


¶−1


where

(4.2)  =


 (1−)

is an F distributed random variable with (2 2) degrees of freedom.  could

be written as follows;

(4.3)  =


1−

³ b−11 − 1´ 
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Using  as a pivotal quantity, a (1− ) 100% exact confidence interval for  is

obtained by

(4.4)

Ã
(2)(22)

(2)(22) + b−11 − 1 
(1−2)(22)

(1−2)(22) + b−11 − 1
!


where ()() is the 
th quantile of the F distribution with ( ) degrees of

freedom.

The other option is to find a 100(1 − )% lower confidence bound  for .

Then ( 1) is a 100(1−)% one-sided confidence interval for  Hence for any
0    1, a 100 (1− )% lower confidence bound for  is

(4.5)
()(22)

()(22) + b−11 − 1 
4.2. Asymptotic confidence interval

Let 12     and 1 2      be the two independent random samples

taken from the  distribution with parameters ( 1) and ( 2) re-

spectively. The MLE b1 in Eq.(3.5) is asymptotically normal with mean  and
variance

(4.6)

2X
=1

2X
=1



1



2
−1

where −1 is the ( )th element of the inverse of the Fisher’s information matrix

which is given by

 =

⎡⎢⎣


21
0

0


22

⎤⎥⎦
(Rao, 1965). Thus, the asymptotic variance of b1 is as follows;
(4.7)

+


b21 ³1− b1´2 

Hence an asymptotic (1− ) 100% confidence interval for  is obtained by

(4.8) Ãb1 − 1−2

r
+


b1 ³1− b1´  b1 + 1−2

r
+


b1 ³1− b1´! 
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where 1−2 is the 1− 2th quantile of the standard normal distribution.

4.3. Simulation study

To study the performance of the confidence intervals, 50000 samples are simu-

lated from the  distribution with the values of parameters (1 2 ) =

(1 2 1), (1 5 1), (5 5 1) and different sample size of  and . It is important

to examine how well our proposed methods work for constructing confidence

intervals. In this section, the approximate confidence intervals based on asymp-

totic properties of the MLEs are compared with the exact confidence intervals

in terms of coverage probabilities. The simulation results are shown in Table

1 and Table 2. The coverage probabilities of the exact confidence intervals for

 are all close to the desired level of 0.95, but the coverage probabilities of the

approximate confidence intervals for  are not so close to 095. The coverage

probabilities of the approximate confidence intervals are close to 095, virtually

for  ≥ 50 and  ≥ 50.

Table 1. Coverage probabilities for the proposed methods and the MLEs of

 for various values of (1 2 ) (n fixed, m increased)

Table 2. Coverage probabilities for the proposed methods and the MLEs of

 for various values of (1 2 ) (m fixed, n increased)
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