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Summary.In the first part of this study, the results of heteroscedasticity in

one way fixed effect ANOVA have been examined with a close concern on large

sample approximations of treatment and error mean sum of squares and distor-

tion of the distribution of the F ratio. Second part includes the presentation of

new and simple approximation procedure which intends to create an easy and

applicable alternative. The purpose of this new approximation procedure is to

preserve the actual Type I error rate at a level determined by the researcher

and to increase the power as well. Third part of the study consist of a simula-

tion study which was implemented to compare the actual significance level and

power of the new approximation, conventional F test and two other alterna-

tives (Welch Test, Kruskal-Wallis Test). Finally, some recommendations about

the preference of these tests for different types of experimental conditions were

given.
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1. Introduction

The purpose of analysis of variance is to test the population mean differences

for statistical significance. This is accomplished by analyzing the variance of the

response variable of the experiment into two parts. First one is due to random

variation and second one is due to differences between population means. This

relationship is shown at Eq.(1)
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These two components are then used in a test procedure called F test which has

a test statistics as in Eq.(2). Under the assumption ∀ = 1 2  

 ∼ 
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In ANOVA, variance of the distributions in which the samples are drawn should

be the same to validate the underlying probability distribution of the method

and to confine the errors within the desired limits. Violation of this equal-

ity of variances assumption is called as heteroscedasticity in literature. In

the case of heteroscedasticity, the distribution of response variable Y will be

∀ = 1 2    ∼ 
¡
 

2


¢
 = 1 2   when the other two basic

assumptions of analysis of variance hold. There are two main results of het-

eroscedasticity; distortion of the distribution of the F ratio and discrepancy

between nominal and actual significance level.

1.1. Distribution of F Ratio

The numerator and denominator sums of squares of F ratio 


are distributed

as weighted sum of squares of independent normal random variables with weights

2 . When the variances differ between populations these weights are unequal

and the distributions are not chi-square. By far the best article about the effect

of unequal variances on the F test is Box (1954a) (G Rupert and Jr. Miller,

1986). Box developed the distribution theory for quadratic forms in the case

of heteroscedasticity and applied it to the one-way classification. The ratio of

mean squares is distributed approximately as 0 where
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1.2. Discrepancy between nominal and actual significance level

An experimenter may wish to test the omnibus null hypothesis of equality of

treatment means at nominal significance level  = 0.05. But in reality this

level may reach 3 or 4 times this level which is called as actual significance level

because of the heterogeneity of variances problem (Wilcox et al 1986). Degree

of this discrepancy depends mainly on the degree of heterogeneity of population

variances and number of replications made with each treatment. To understand

the effect of unequal variances on the F test, it suffices to examine the large

sample case where all the n are large. (G Rupert and Jr. Miller, 1986). The

denominator mean sum of squares is converging to its expected value, which is
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where2 is the variance of the observations from the i’th population. Since  −
 =
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( − 1) , the expectation of sum of squares error is a weighted average of
the 2 and called as ̄

2.The expectation of the numerator mean sum of squares

under 0 is
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This quantity is a different weighted average of the 2 and called as ̄
2
∗. When the

n are all equal, the two weighted averages agree (̄
2 = ̄2∗) which means the F

ratio is centered near 1 as it should be. In this case the variance of the numerator

should be controlled in order to see the effect of variance heterogeneity.
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When the variances are equal the quantity in brackets in the above formula

should be 1, but it obviously exceeds this when the 2 differ. Thus the actual

variance is larger than the theoretical variance (the variance where the 2 equal)

and the upper tail of the distribution of the F ratio has more mass in it than

anticipated by the 2−1 distribution. For an observed F ratio the actual sig-
nificance level is larger than the one calculated from the tables, but numerical

studies indicate that the effect is not large. This conclusion is also born out in

small samples (Box,1954a, Scheffe, 1959). When the n are unequal, the effects

can be more serious. Suppose that the large 2 happen to be associated with

the large n. Then in̄
2, the large 2 receive greater weight, where as in ̄2∗

the small 2 receive greater weight. The expectation of the numerator mean

squares is, therefore, less then the expectation of the denominator, and the cen-

ter of the distribution of the F ratio is shifted below 1. The actual significance

level is less than the one stated from the tables (nominal values). If the large 2
are associated with the small n, the shift goes in the opposite direction. The

actual significance level exceeds its nominal level without too much disparity in

the variances. Falsely reporting significant results when the small samples have

the larger variances is a serious worry. To balance the experiment is very crucial

if it is possible. Then unequal variances and other departures from assumptions

have the least effect.

2. Different Solution Approaches

Over the years, many attempts have been made to find solutions that are ro-

bust in both Type I and Type II error rate performance while at the same time

having nominal performance when the homogeneity of variance assumption is

not violated. There are 6 main approaches proposed to solve the mentioned

problem; Approximate Tests, Exact Tests, Nonparametric Tests, Data Trans-

formations, Weighted Least Square Estimation Method and Robust Statistical

Procedures.

2.1. A New And Simple Approximation

Consider k independent randomly sampled groups each measured on a normally

distributed random variable (Y). Variances of the populations and sample size

of the groups need not to be equal. Each of the k samples of size n will have

sample mean ̄ and each of the means will have a standard error ̄
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The variance-weighted estimate of the common mean ( +) of Y becomes
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Finally, for each of the k groups a one-sample t statistics is calculated as
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Under the usual assumptions, each of the t will be distributed as Student’s t

with = n - 1 degrees of freedom. Several of the approximation methods that

have appeared in the literature begin with the equivalent of the same derivation.

After this step, this new approximation uses a normalizing transformation on

each of the sample t values directly in order to transform the each t values

in to standard normal deviate z. Several normalizing transformations for the t

statistics have appeared in the literature. One of them is “Accurate Normalizing

Transformations of a Student’s t Variate” Bailey B.J.R (1980). Bailey offers a

locally accurate normalizing transformation which is given as follows
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will be approximately distributed 2−1. Decision rule that the tests uses is
reject the null hypothesis of of equal means if B2 exceeds the 1- quantile of a

chi-square distribution with k-1 degrees of freedom. Let us call the first part of

the z transformation as coefficient c, then ;
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can be written with the help of a table of c’s (Table1).

3. Simulation Study

Performance of the F, Welch (W), Kruskal-Wallis(KW), Alexender-Govern(AG)

and new approximation (B2) procedures have been examined by means of a

simulation study. Simulated actual significance level and and power of the test

have been obtained using different sample sizes and error variances for k=3,

k=6 and k=9 groups by using nominal significance level 0.05. All means were

equal to 0 when predicting actual significance level. Two different configurations

of mean differences were used when assesing the power of the tests. The first

pattern was 1 = 2, 2 = 0, 3 = 0 while the second pattern was 1 = -1,

2 = 0, 3 = 1 in which the means were equally spaced. Each configuration

was executed 10000 times. All data were generated from normal distribution by

using the 13’th version of statistical software MINITAB. Different experimental

desings used in simulation study and all results were given in table section at

the end of the paper.

4. Conclusions

Results have been interpreted according to number of treatments, number of

replications and population variances. Interpretation criterion was the close-

ness of the actual significance level and nominal significance level ( =0.05).
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Bradley (1978) has stated that a test can said to be robust to a specific as-

sumption violation if it protects actual significance level between 0.9   

1.1 . This criterion is called as Bradley’s stringent criterion of robustness and

refers to 0.045    0.055 for nominal significance level of 0.05. Power values

which directly change with Type I error rates have not been considered while

comparing any two tests unless the actual Type I error rates of the tests are

approximately equal. Power values for k=9 groups could not be given because

of size problem. Recommended tests for different experimental designs were

given at Table 9.
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Tables

Table 1: Coefficient of c’s up to 10 degrees of freedom for = 0.05 and = 0.01

Table 2: Sample sizes and variances of the distributions for k=3, k=6 and k=9

Table 3 : Actual significance sevels for different experimental designs of k = 3 groups

Table 4 : Actual significance levels for different experimental designs of k = 6 groups
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Table 5 : Actual significance levels for different experimental designs of k= 9 groups

Table 6 : Predicted power values for different experimental designs of k=3 groups

Table 7 : Predicted power values for different experimental designs of k=6 groups
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Table 8 : Codes of designs used in this simulation study

Table 9: Recommended tests with different experimental designs
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