On the Solutions of the Difference Equation $x_{n+1} = \max\left\{\frac{A}{x_n}, \frac{x_{n-1}}{B}\right\}$

Ali Gelişken and İbrahim Yalçınkaya

Mathematics Department, Faculty of Education, Selcuk University, 42090, Konya, Turkey;

 $e\hbox{-}mail: iyalcinkaya@selcuk.edu.tr$

Received: April 26, 2005

Summary. In this paper we study the behaviour of the solutions of the following difference equation

$$x_{n+1} = \max\left\{\frac{A}{x_n}, \frac{x_{n-1}}{B}\right\}$$

where A, B and the initial conditions x_{-1} and x_0 are nonzero real numbers. In most of the cases we determine the behaviour of the solutions as a function of the parameters A, B and the initial conditions x_{-1} and x_0 .

Key words: Difference equation, max operator, periodicity, behaviour.

1. Introduction

In this paper we study the behaviour of the solutions of the following difference equation

(1)
$$x_{n+1} = \max\left\{\frac{A}{x_n}, \frac{x_{n-1}}{B}\right\}$$

where A, B and the initial conditions x_{-1} and x_0 are nonzero real numbers.

Some closely related equations were investigated, in [1,2,3,4,5]. For example, the investigation of the difference equation

(2)
$$x_{n+1} = \max \left\{ \frac{A_0}{x_n}, \frac{A_1}{x_{n-1}}, \dots, \frac{A_k}{x_{n-k}} \right\}, \ n = 0, 1, \dots$$

where A_i , i = 0, 1, ..., k, are real numbers, such that at least one of the A_i and the initial conditions $x_0, x_{-1}, ..., x_{-k}$, are different from zero, was proposed in [3] and [4].

A special case of the max operator in (2) arises naturally in certain models in automatic control theory (see, [6,7]).

For some other recent studies concerning, the periodic nature of scalar nonlinear difference equations see, for example, [8,9,10].

2. Main Results

2.1. Case I B < 0 < A. In this section we consider the behaviour of the solutions of (1) in the case B < 0 < A. The following theorem completely desciribes the behaviour of the solutions of (1) in this case.

Theorem 1 Consider (1), with B < 0 < A,

a) If $0 < x_0, x_{-1}$, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, \dots)$$

b) If $x_0, x_{-1} < 0$ and $\frac{x_0}{B} < \frac{AB}{x_{-1}}$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \dots)$$

c) If $x_0, x_{-1} < 0$ and $\frac{AB}{x_{-1}} < \frac{x_0}{B}$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \dots)$$

d) If $x_{-1} < 0 < x_0$ and $x_1 = \frac{A}{x_0}$, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, x_0, \dots)$$

e) If $x_{-1} < 0 < x_0$ and $x_1 = \frac{x_{-1}}{B}$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \dots)$$

f) If $x_0 < 0 < x_{-1}$ and $x_1 = \frac{A}{x_0}$, B < -1, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \dots)$$

g) If $x_0 < 0 < x_{-1}$ and $x_1 = \frac{A}{x_0}$, -1 < B < 0, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{X_0}{B}, \frac{A}{Bx_0}, Bx_0, \frac{A}{Bx_0}, Bx_0, \dots)$$

h) If
$$x_0 < 0 < x_{-1}$$
 and $x_1 = \frac{x_{-1}}{B}$, $\frac{AB}{x_0} < \frac{x_{-1}}{B^2}$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \dots)$$

i) If
$$x_0 < 0 < x_{-1}$$
 and $x_1 = \frac{x_{-1}}{B}$, $\frac{Bx_{-1}}{2} < \frac{AB}{x_0}$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \dots)$$

Proof. (a) Let $0 < x_0, x_{-1}$, then $0 < x_n$ for $-1 \le n$ and $x_1 = \max\left\{\frac{A}{x_0}, \frac{x_{-1}}{B}\right\} = \frac{A}{x_0}$. Then, $x_1 = \frac{A}{x_0}, \frac{x_{-1}}{B} < 0 < \frac{A}{x_0}$ and $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0$. Hence by induction we get $x_{n+1} = \frac{A}{x_n}, 0 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, \dots)$$

(b), (c) Let $x_0, x_{-1} < 0$, then $0 < x_n$ for $1 \le n$ and $x_1 = \max\left\{\frac{A}{x_0}, \frac{x_{-1}}{B}\right\} = \frac{x_{-1}}{B}$. If $\frac{x_0}{B} < \frac{AB}{x_{-1}}$, then $x_1 = \frac{x_{-1}}{B}$ and $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{AB}{x_{-1}}$. It follows $x_3 = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B}$, $\frac{x_{-1}}{B^2} < 0 < \frac{x_{-1}}{B}$ and $x_4 = \max\left\{\frac{AB}{x_{-1}}, \frac{AB^2}{x_{-1}}\right\} = \frac{AB}{x_{-1}}$. By induction we obtain that $x_{2n} = \frac{AB}{x_{-1}}$ and $x_{2n-1} = \frac{x_{-1}}{B}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \dots)$$

If $\frac{AB}{x_{-1}} < \frac{x_0}{B}$, then $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{x_0}{B}$. It follows $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{AB}{x_0}$ and $x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B}$. By induction we get $x_{2n} = \frac{x_0}{B}$ and $x_{2n+1} = \frac{AB}{x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \dots)$$

(d), (e) Let $x_{-1} < 0 < x_0$, then $0 < x_n$ for $0 \le n$. If $x_1 = \frac{A}{x_0}$ or $\frac{x_{-1}}{B} < \frac{A}{x_0}$, then $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0$, $\frac{x_0}{B} < 0 < x_0$ and $x_3 = \max\left\{\frac{A}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \max\left\{1, \frac{1}{B}\right\} = \frac{A}{x_0}$. Hence by induction it is easy to see that (1) implies the difference equation $x_{n+1} = \frac{A}{x_n}$ for $0 \le n$, in this case, we write

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, x_0, \dots)$$

If $x_1 = \frac{x_{-1}}{B}$, then $x_2 = \max\left\{\frac{A}{x_{-1}}, \frac{x_0}{B}\right\} = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{AB}{x_{-1}}$. It follows $x_3 = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B} = x_1$ and $x_4 = \max\left\{\frac{AB}{x_{-1}}, \frac{A}{x_{-1}}\right\} = \frac{A}{x_{-1}}\min\left\{B, 1\right\} = \frac{AB}{x_{-1}}$. Thus by induction we have $x_{2n} = \frac{AB}{x_{-1}}$ and $x_{2n-1} = \frac{x_{-1}}{B}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \dots)$$

(f), (g) Let $x_0 < 0 < x_{-1}$ and $x_1 = \frac{A}{x_0} < 0$. Then, $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = \frac{x_0}{B}$, $0 < \frac{x_0}{B}$ and $0 < x_n$, $2 \le n$. If B < -1 and $x_1 = \frac{A}{x_0}$, then $x_2 = \frac{x_0}{B}$ and $x_3 = \max\left\{\frac{AB}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0}\min\left\{B, \frac{1}{B}\right\} = \frac{AB}{x_0}$. By induction we get $x_{2n} = \frac{x_0}{B}$ and $x_{2n+1} = \frac{AB}{x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \dots)$$

If $B \in (-1,0)$, then $x_1 = \frac{A}{x_0}$, $x_2 = \frac{x_0}{B}$ and $x_3 = \max\left\{\frac{AB}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \min\left\{B, \frac{1}{B}\right\} = \frac{A}{Bx_0}$ and $x_4 = \max\left\{Bx_0, \frac{x_0}{B^2}\right\} = x_0 \min\left\{B, \frac{1}{B^2}\right\} = Bx_0$. By induction we get $x_{2n} = Bx_0$ and $x_{2n-1} = \frac{A}{Bx_0}$ for $2 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{A}{B}, \frac{A}{Bx_0}, Bx_0, \frac{A}{Bx_0}, Bx_0, \dots)$$

(h), (i) Let $x_0 < 0 < x_{-1}$ and $x_1 = \frac{x_{-1}}{B}$, Hence we get $0 < x_n$ for $2 \le n$ and $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{x_0}{B}$, $0 < \frac{x_0}{B}$.

If $\frac{AB}{x_0} < \frac{x_{-1}}{B^2}$ and $x_1 = \frac{x_{-1}}{B}$. Then, $x_2 = \frac{x_0}{B}$ and $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B^2}$. It follows $x_4 = \max\left\{\frac{AB^2}{x_{-1}}, \frac{x_0}{B^2}\right\} = \frac{AB^2}{x_{-1}}$, $0 < \frac{AB^2}{x_{-1}}$. $x_5 = \max\left\{\frac{x_{-1}}{B^2}, \frac{x_{-1}}{B^3}\right\} = \frac{x_{-1}}{B^2}$, $\frac{x_{-1}}{B^3} < 0 < \frac{x_{-1}}{B^2}$. By induction we get $x_{2n} = \frac{AB^2}{x_{-1}}$ and $x_{2n-1} = \frac{x_{-1}}{B^2}$ for $2 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \dots)$$

If $\frac{x_{-1}}{B^2} < \frac{AB}{x_0}$ and $x_1 = \frac{x_{-1}}{B}$. Then, $x_2 = \frac{x_0}{B}$, $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{AB}{x_0}$. It follows $x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B} = x_2$ and $x_5 = \max\left\{\frac{AB}{x_0}, \frac{A}{x_0}\right\} = \frac{A}{x_0}\min\left\{B, 1\right\} = \frac{AB}{x_0} = x_3$. Hence by induction we obtain that $x_{2n} = \frac{x_0}{B}$ and $x_{2n-1} = \frac{AB}{x_0}$ for $2 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \dots)$$

2.2. Case II A < 0 < B. In this section we consider the behaviour of the solutions of (1) in the case A < 0 < B. The following theorem completely describes the behaviour of the solutions of (1) in this case.

Theorem 2 Consider (1), with A < 0 < B.

a) If $0 < x_0, x_{-1}$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{x_0}{B^2}, \dots, \frac{x_{-1}}{B^n}, \frac{x_0}{B^n}, \dots)$$

b) If $x_0, x_{-1} < 0$ and 1 < B, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{A}{B}, \frac{AB}{x_0}, \frac{x_0}{B^2}, \frac{AB^2}{x_0}, ..., \frac{AB^{n-1}}{x_0}, \frac{x_0}{B^n}, ...)$$

c) If $x_0, x_{-1} < 0$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{Bx_0}, Bx_0, \dots, \frac{A}{B^{n-1}x_0}, B^{n-1}x_0, \dots)$$

d) If $x_{-1} < 0 < x_0$, $x_1 = \frac{A}{x_0}$ and 1 < B, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{Bx_0}, Bx_0, \dots, \frac{A}{B^{n-1}x_0}, B^{n-1}x_0, \dots)$$

e) If $x_{-1} < 0 < x_0$, $x_1 = \frac{A}{x_0}$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{AB^{n-1}}{x_0}, \frac{x_0}{B^n}, \dots)$$

f) If $x_{-1} < 0 < x_0$, $x_1 = \frac{x_{-1}}{B}$ and 1 < B, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \dots, \frac{x_{-1}}{B^n}, \frac{AB^n}{x_{-1}}, \dots)$$

g) If $x_{-1} < 0 < x_0$, $x_1 = \frac{x_{-1}}{B}$, $\frac{AB}{x_{-1}} < \frac{x_0}{B}$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{AB^{n-1}}{x_0}, \frac{x_0}{B^n}, \dots)$$

h) If $x_{-1} < 0 < x_0$, $x_1 = \frac{x_{-1}}{B}$, $\frac{x_0}{B} < \frac{AB}{x_{-1}}$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{X_{-1}}{B}, \frac{A}{x_{-1}}, x_{-1}, \frac{A}{Bx_{-1}}, Bx_{-1}, \dots, \frac{A}{B^{n-2}x_{-1}}, B^{n-2}x_{-1}, \dots)$$

i) If $x_0 < 0 < x_{-1}$, $x_1 = \frac{A}{x_0}$ and 1 < B, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{AB^{n-1}}{x_0}, \frac{x_0}{B^n}, \dots)$$

j) If
$$x_0 < 0 < x_{-1}$$
, $x_1 = \frac{A}{x_0}$ and $0 < B < 1$, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{Bx_0}, Bx_0, \dots, \frac{A}{B^{n-1}x_0}, B^{n-1}x_0, \dots)$$

k) If
$$x_0 < 0 < x_{-1}$$
, $x_1 = \frac{x_{-1}}{B}$, $\frac{x_0}{B} < \frac{AB}{x_{-1}}$ and $1 < B$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{A}{x_{-1}}, x_{-1}, \frac{A}{Bx_{-1}}, Bx_{-1}, \dots, \frac{A}{B^{n-2}x_{-1}}, B^{n-2}x_{-1}, \dots)$$

l) If
$$x_0 < 0 < x_{-1}, \; x_1 = \frac{x_{-1}}{B}$$
 , $\frac{AB}{x_{-1}} < \frac{x_0}{B}$ and $1 < B$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{x_0}{B^n}, \frac{AB^n}{x_0}, \dots)$$

m) If
$$x_0 < 0 < x_{-1}$$
, $x_1 = \frac{x_{-1}}{B}$ and $0 < B < 1$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \dots, \frac{x_{-1}}{B^n}, \frac{AB^n}{x_{-1}}, \dots)$$

Proof. (a) Let $0 < x_0, x_{-1}$, then $0 < x_n$ for $-1 \le n$ and $x_1 = \max\left\{\frac{A}{x_0}, \frac{x_{-1}}{B}\right\} = \frac{x_{-1}}{B}$, $\frac{A}{x_0} < 0 < \frac{x_{-1}}{B}$, then $x_1 = \frac{x_{-1}}{B}$ and it follows $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{x_0}{B}$, $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B^2}$. Therefore $x_4 = \max\left\{\frac{AB^2}{x_{-1}}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B^2}$. By induction we obtain that $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{x_{-1}}{B^n}$ for $0 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{x_0}{B^2}, \dots, \frac{x_{-1}}{B^n}, \frac{x_0}{B^n}, \dots)$$

(b), (c) Let $x_{-1}, x_0 < 0$, then $x_1 = \max\left\{\frac{A}{x_0}, \frac{x_{-1}}{B}\right\} = \frac{A}{x_0}, \frac{x_{-1}}{B} < 0 < \frac{A}{x_0}$. If 1 < B, then $x_1 = \frac{A}{x_0}$, $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0 \min\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B}$, $x_3 = \max\left\{\frac{AB}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \max\left\{1, \frac{1}{B}\right\} = \frac{AB}{x_0}$ and $x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B} \min\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B^2}$. By induction we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{AB^{n-1}}{x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{X_0}{B}, \frac{AB}{x_0}, \frac{X_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{AB^{n-1}}{x_0}, \frac{X_0}{B^n}, \dots)$$

If $B \in (0,1)$, then $x_2 = \max\{x_0, \frac{x_0}{B}\} = x_0 \min\{B, \frac{1}{B}\} = x_0$ and $x_3 = \max\{\frac{A}{x_0}, \frac{A}{Bx_0}\} = \frac{A}{x_0} \max\{B, \frac{1}{B}\} = \frac{A}{Bx_0}$, $0 < \frac{A}{Bx_0}$, $x_4 = \max\{Bx_0, \frac{x_0}{B}\} = x_0 \min\{B, \frac{1}{B}\} = Bx_0$, $Bx_0 < 0$. By induction we get $x_{2n} = B^{n-1}x_0$ and $x_{2n-1} = \frac{A}{B^{n-1}x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{Bx_0}, Bx_0, \dots, \frac{A}{B^{n-1}x_0}, B^{n-1}x_0, \dots)$$

Also, it is easy to see that $x_{2n} < 0 < x_{2n-1}$ for $1 \le n$, in this case $x_{-1}, x_0 < 0$.

(d), (e) Let $x_{-1} < 0 < x_0$ and $x_1 = \frac{A}{x_0}$, $\frac{A}{x_0} < 0$. If 1 < B, then $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0 \max\left\{1, \frac{1}{B}\right\} = x_0$, $x_3 = \max\left\{\frac{A}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \min\left\{1, \frac{1}{B}\right\} = \frac{A}{Bx_0}$, $\frac{A}{Bx_0} < 0$ $x_4 = \max\left\{Bx_0, \frac{x_0}{B^2}\right\} = x_0 \max\left\{1, \frac{1}{B}\right\} = Bx_0$, $0 < Bx_0$. Hence by induction we get $x_{2n} = B^{n-1}x_0$, $0 < B^{n-1}x_0$ and $x_{2n-1} = \frac{A}{B^{n-1}x_0}$, $\frac{A}{B^{n-1}x_0} < 0$, for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{Bx_0}, Bx_0, \dots, \frac{A}{B^{n-1}x_0}, B^{n-1}x_0, \dots)$$

If $B \in (0,1)$, then $x_1 = \frac{A}{x_0}$, $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0 \max\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B}$, $0 < \frac{x_0}{B}$ and $x_3 = \max\left\{\frac{AB}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \min\left\{B, \frac{1}{B}\right\} = \frac{AB}{x_0}$, $x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B} \max\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B^2}$. By induction we get $x_{2n} = \frac{x_0}{B^n}$, $0 < \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{AB^{n-1}}{x_0}$, $\frac{AB^{n-1}}{x_0} < 0$ for $1 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{X_0}{B}, \frac{AB}{x_0}, \frac{X_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{AB^{n-1}}{x_0}, \frac{X_0}{B^n}, \dots)$$

(f), (g), (h) Let $x_{-1} < 0 < x_0$ and $x_1 = \frac{x_{-1}}{B}$, then we have $x_{2n-1} < 0 < x_{2n}$,

 $0 \le n$. If $1 \le B$, then

 $x_2 = \max\left\{\frac{A}{x_1}, \frac{x_0}{B}\right\} = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{AB}{x_{-1}}, 0 < \frac{AB}{x_{-1}}, x_3 = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B} \min\left\{1, \frac{1}{B}\right\} = \frac{x_{-1}}{B^2}, \frac{x_{-1}}{B^2} < 0. \text{ Hence by induction we get } x_{2n} = \frac{AB^n}{x_{-1}} \text{ and } x_{2n-1} = \frac{x_{-1}}{B^n} \text{ for } 1 \le n, \text{ that is}$

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \dots, \frac{x_{-1}}{B^n}, \frac{AB^n}{x_{-1}}, \dots)$$

If $B \in (0,1)$ and $\frac{AB}{x_{-1}} < \frac{x_0}{B}$, then $x_1 = \frac{x_{-1}}{B}$, $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{x_0}{B}$, $0 < \frac{x_0}{B}$ and it follows $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{AB}{x_0}$, $\frac{x_{-1}}{B^2} < \frac{x_{-1}}{B} < \frac{AB}{x_0}$ and $x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B} \max\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B^2}$. By induction we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{AB^{n-1}}{x_0}$ for $2 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x_0}, \frac{x_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{AB^{n-1}}{x_0}, \frac{x_0}{B^n}, \dots)$$

If $B \in (0,1)$ and $\frac{x_0}{B} < \frac{AB}{x_{-1}}$, then $x_1 = \frac{x_{-1}}{B}$, $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{AB}{x_{-1}}$ and $x_3 = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B}\min\left\{1, \frac{1}{B}\right\} = \frac{x_{-1}}{B}$, it follows $x_4 = \frac{x_{-1}}{B}$

 $\max\left\{\frac{AB}{x_{-1}}, \frac{A}{x_{-1}}\right\} = \frac{A}{x_{-1}}, x_5 = \max\left\{x_{-1}, \frac{x_{-1}}{B^2}\right\} = x_{-1}, x_6 = \max\left\{\frac{A}{x_{-1}}, \frac{A}{Bx_{-1}}\right\} = \frac{A}{Bx_{-1}}.$ By induction we get $x_{2n} = \frac{A}{B^{n-2}x_{-1}}$ and $x_{2n+1} = B^{n-2}x_{-1}$ for $1 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{A}{x_{-1}}, x_{-1}, \frac{A}{Bx_{-1}}, Bx_{-1}, \dots, \frac{A}{B^{n-2}x_{-1}}, B^{n-2}x_{-1}, \dots)$$

(i), (j) Let $x_0 < 0 < x_{-1}$ and $x_1 = \frac{A}{x_0}$, then $x_{2n} < 0 < x_{2n-1}$ for $0 \le n$. If 1 < B, then

 $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0 \min\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B}, \ x_3 = \max\left\{\frac{AB}{x_0}, \frac{A}{Bx_0}\right\} = \frac{AB}{x_0},$ $x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B^2}. \text{Hence by induction we get } x_{2n} = \frac{x_0}{B^n} \text{ and } x_{2n-1} = \frac{AB^{n-1}}{x_0} \text{ for } 1 \leq n, \text{ that is}$

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{X_0}{B}, \frac{AB}{x_0}, \frac{X_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{AB^{n-1}}{x_0}, \frac{X_0}{B^n}, \dots)$$

If $B \in (0,1)$, then $x_1 = \frac{A}{x_0}$, $x_2 = \max\{x_0, \frac{x_0}{B}\} = x_0$ and $x_3 = \max\{\frac{A}{x_0}, \frac{A}{Bx_0}\} = \frac{A}{Bx_0}$, $x_4 = \max\{Bx_0, \frac{x_0}{B}\} = Bx_0$. By induction we get $x_{2n} = B^{n-1}x_0$ and $x_{2n-1} = \frac{A}{B^{n-1}x_0}$ for $1 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{Bx_0}, Bx_0, \dots, \frac{A}{B^{n-1}x_0}, B^{n-1}x_0, \dots)$$

(k), (l), (m) Let first $x_0 < 0 < x_{-1}, x_1 = \frac{x_{-1}}{B}$ and 1 < B, If $\frac{x_0}{B} < \frac{AB}{x_{-1}}$,

then $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{AB}{x_{-1}}$, and it follows $x_3 = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B}$, $x_4 = \max\left\{\frac{AB}{x_{-1}}, \frac{A}{x_{-1}}\right\} = \frac{A}{x_{-1}} \min\left\{B, 1\right\} = \frac{A}{x_{-1}}$. Hence by induction we get $x_{2n} = \frac{A}{B^{n-2}x_{-1}}$ and $x_{2n+1} = B^{n-2}x_{-1}$ for $1 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{A}{x_{-1}}, x_{-1}, \frac{A}{Bx_{-1}}, Bx_{-1}, \dots, \frac{A}{B^{n-2}x_{-1}}, B^{n-2}x_{-1}, \dots)$$

If $\frac{AB}{x_{-1}} < \frac{x_0}{B}$, then $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{x_0}{B}, \frac{x_{-1}}{B^2} < \frac{x_{-1}}{B} < \frac{AB}{x_0}$ and it follows $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{AB}{x_0}, x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B}\min\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B^2}$. By induction we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n+1} = \frac{AB^n}{x_0}$ for $1 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{AB}{x}, \frac{x_0}{B^2}, \frac{AB^2}{x_0}, \dots, \frac{x_0}{B^n}, \frac{AB^n}{x_0}, \dots)$$

Finally, Let $x_0 < 0 < x_{-1}, x_1 = \frac{x_{-1}}{B}$ and 0 < B < 1 then $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{AB}{x_{-1}}$ and $x_3 = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B} \max\left\{1, \frac{1}{B}\right\} = \frac{x_{-1}}{B^2}$, it follows $x_4 = \max\left\{\frac{AB^2}{x_{-1}}, \frac{A}{x_{-1}}\right\} = \frac{A}{x_{-1}} \min\left\{B^2, 1\right\} = \frac{AB^2}{x_{-1}}$. By induction we get $x_{2n} = \frac{AB^n}{x_{-1}}$ and $x_{2n-1} = \frac{x_{-1}}{B^n}$ for $1 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{AB^2}{x_{-1}}, \dots, \frac{x_{-1}}{B^n}, \frac{AB^n}{x_{-1}}, \dots)$$

Also, it is easy to see that $x_{2n} < 0 < x_{2n-1}, 0 \le n$. The proof is completed.

2.3. Case III A, B < 0. In this section we consider the behaviour of the solutions of (1) in the case A, B < 0.

Lemma 1 Consider the difference equation

(3)
$$y_{n+1} = \left\{ \begin{array}{ll} \min\left\{A, \frac{y_n}{B}\right\} & n \equiv 0 \pmod{3} \\ \max\left\{A, \frac{y_n}{B}\right\} & n \neq 0 \pmod{3} \end{array} \right\}$$

where $y_0 \in (-\infty, 0)$. Then every solution of (3) is eventually three periodic. Morever, the following statements are true:

a) If $B \in (-1,0)$, then (for $3 \le n$),

$$y_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 1 \pmod{3} \\ A & n \neq 1 \pmod{3} \end{array} \right\}$$

b) If $B \leq -1$, then (for $3 \leq n$),

$$y_n = \left\{ \begin{array}{ll} A & n \equiv 0 \pmod{3} \\ \frac{A}{B} & n \equiv 1 \pmod{3} \\ \frac{A}{B^2} & n \equiv 2 \pmod{3} \end{array} \right\}$$

Proof. (a) Let $B \in (-1,0)$, then $y_1 = \max\left\{A, \frac{y_0}{B}\right\} = \frac{y_0}{B}$, $A < 0 < \frac{y_0}{B}$. If $A < \frac{y_0}{B^2}$, then $y_2 = \max\left\{A, \frac{y_0}{B^2}\right\} = \frac{y_0}{B^2}$ and $y_3 = \min\left\{A, \frac{y_0}{B^3}\right\} = A$. If $\frac{y_0}{B^2} < A$, then $y_2 = \max\left\{A, \frac{A}{B}\right\} = A$ and $y_3 = \min\left\{A, \frac{A}{B}\right\} = A$. It is easy to see that $y_3 = A$ (certainly) it follows $y_4 = \max\left\{A, \frac{A}{B}\right\} = \frac{A}{B}$, $y_5 = \max\left\{A, \frac{A}{B^2}\right\} = A$ $\min\left\{1, \frac{1}{B^2}\right\} = A$ and $y_6 = \min\left\{A, \frac{A}{B}\right\} = A = y_3$. Hence by induction we obtain the each solution of (3) is eventually three periodic and that is

$$y_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 1 \pmod{3} \\ A & n \neq 1 \pmod{3} \end{array} \right\}, \quad for \ n \le 3$$

(b) Let $B \leq -1$, then $y_1 = \max\left\{A, \frac{y_0}{B}\right\} = \frac{y_0}{B}$. If $\frac{y_0}{B^2} < A$, then $y_2 = \max\left\{A, \frac{y_0}{B^2}\right\} = A$ and $y_3 = \min\left\{A, \frac{A}{B}\right\} = A \max\left\{1, \frac{1}{B}\right\} = A$. If $A < \frac{y_0}{B^2}$, then $y_2 = \max\left\{A, \frac{y_0}{B^2}\right\} = \frac{y_0}{B^2}$ and $y_3 = \min\left\{A, \frac{y_0}{B^3}\right\} = A$. It is easy to see that $y_3 = A$ (certainly) it follows $y_4 = \max\left\{A, \frac{A}{B}\right\} = \frac{A}{B}$, $y_5 = \max\left\{A, \frac{A}{B^2}\right\} = A$

 $\min\left\{1,\frac{1}{B^2}\right\} = \frac{A}{B^2}$. By induction we obtain the each solution of (3) is eventually three periodic and that is

$$y_n = \left\{ \begin{array}{ll} A & n \equiv 0 \pmod{3} \\ \frac{A}{B} & n \equiv 1 \pmod{3} \\ \frac{A}{B^2} & n \equiv 2 \pmod{3} \end{array} \right\}, \quad for \ n \le 3$$

Lemma 2 Consider the difference equation

(4)
$$y_{n+1} = \left\{ \begin{array}{ll} \min\left\{A, \frac{y_n}{B}\right\} & n \equiv 1 \pmod{3} \\ \max\left\{A, \frac{y_n}{B}\right\} & n \neq 1 \pmod{3} \end{array} \right\}$$

where $y_0 \in R - \{0\}$. Then every solution of (4) is eventually three periodic. Morever, the following statements are true;

a) If $B \leq -1$, then

$$y_n = \left\{ \begin{array}{ll} A & n \equiv 1 \pmod{3} \\ \frac{A}{B} & n \equiv 2 \pmod{3} \\ \frac{A}{B^2} & n \equiv 0 \pmod{3} \end{array} \right\}, \text{ for } 4 \le n$$

b) If $B \in (-1,0)$, then

$$y_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 2 \pmod{3} \\ A & n \neq 2 \pmod{3} \end{array} \right\}, \text{ for } 4 \le n$$

Proof. (a) Let $B \in (-\infty, -1]$ and $0 < y_0$. If $A < \frac{y_0}{B}$, then $y_1 = \min \left\{ A, \frac{y_0}{B} \right\} = A$, $y_2 = \max \left\{ A, \frac{A}{B} \right\} = \frac{A}{B}$, $y_3 = \max \left\{ A, \frac{A}{B^2} \right\} = \frac{A}{B^2}$ and $y_4 = \min \left\{ A, \frac{A}{B^3} \right\} = A \max \left\{ 1, \frac{1}{B^3} \right\} = A = y_1$. By induction we get

$$y_n = \left\{ \begin{array}{ll} A & n \equiv 1 \pmod{3} \\ \frac{A}{B} & n \equiv 2 \pmod{3} \\ \frac{A}{B^2} & n \equiv 0 \pmod{3} \end{array} \right\}, \text{ for } 1 \le n$$

Let $y_1 = \frac{y_0}{B}$, then $y_2 = \max\left\{A, \frac{y_0}{B^2}\right\} = \frac{y_0}{B^2}$. If $y_3 = \max\left\{A, \frac{y_0}{B^3}\right\} = \frac{y_0}{B^3}$, then $y_4 = \min\left\{A, \frac{y_0}{B^4}\right\} = A$. If $y_3 = \max\left\{A, \frac{y_0}{B^3}\right\} = A$, then $y_4 = \min\left\{A, \frac{A}{B}\right\} = A$. We have $y_4 = A$. It follows $y_5 = \max\left\{A, \frac{A}{B}\right\} = \frac{A}{B}$, $y_6 = \max\left\{A, \frac{A}{B^2}\right\} = \frac{A}{B^2}$ and $y_7 = \min\left\{A, \frac{A}{B^3}\right\} = A = y_4$. Hence, by induction, we obtain

$$y_n = \left\{ \begin{array}{ll} A & n \equiv 1 \pmod{3} \\ \frac{A}{B} & n \equiv 2 \pmod{3} \\ \frac{A}{B^2} & n \equiv 0 \pmod{3} \end{array} \right\}, \text{ for } 4 \le n$$

Now, Let $B \in (-\infty, -1]$ and $y_0 < 0$. Then $y_1 = \min \left\{ A, \frac{y_0}{B} \right\} = A$, $A < 0 < \frac{y_0}{B}$ and $y_2 = \max \left\{ A, \frac{A}{B} \right\} = \frac{A}{B}$, $y_3 = \max \left\{ A, \frac{A}{B^2} \right\} = A \min \left\{ 1, \frac{1}{B^2} \right\} = \frac{A}{B^2}$ and $y_4 = \min \left\{ A, \frac{A}{B^3} \right\} = A \max \left\{ 1, \frac{1}{B^3} \right\} = A = y_1$. By induction, we get

$$y_n = \left\{ \begin{array}{ll} A & n \equiv 1 \pmod{3} \\ \frac{A}{B} & n \equiv 2 \pmod{3} \\ \frac{A}{B^2} & n \equiv 0 \pmod{3} \end{array} \right\}, \text{ for } 1 \le n$$

(b) Let $B \in (-1,0)$, $0 < y_0$ and $y_1 = A$, then $y_2 = \max\{A, \frac{A}{B}\} = \frac{A}{B}$, $y_3 = \max\{A, \frac{A}{B^2}\} = A$, $y_4 = \min\{A, \frac{A}{B}\} = A = y_1$. Hence by induction we see that each solution of Eq.(4) is three periodic and

$$y_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 2 \pmod{3} \\ A & n \neq 2 \pmod{3} \end{array} \right\}, \text{ for } 1 \le n$$

Let $y_1 = \frac{y_0}{B}, \frac{y_0}{B} < A$, then $y_2 = \max\left\{A, \frac{y_0}{B^2}\right\} = \frac{y_0}{B^2}$. If $A < \frac{y_0}{B^3}$ or $\frac{y_0}{B^3} < A$, then by induction we have $y_4 = A$. It follows $y_5 = \max\left\{A, \frac{A}{B}\right\} = \frac{A}{B}, y_6 = \max\left\{A, \frac{A}{B^2}\right\} = A$ and $y_7 = \min\left\{A, \frac{A}{B}\right\} = A = y_4$. By induction we obtain

$$y_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 2 \pmod{3} \\ A & n \neq 2 \pmod{3} \end{array} \right\}, \text{ for } 4 \le n$$

Thus it is eventually three periodic.

Finally, Let $y_0 < 0$. then $y_1 = \min\{A, \frac{y_0}{B}\} = A$ and it follows $y_2 = \max\{A, \frac{A}{B}\} = \frac{A}{B}$, $y_3 = \max\{A, \frac{A}{B^2}\} = A$ and $y_4 = \min\{A, \frac{A}{B}\} = A = y_1$. By induction, we get

$$y_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 2 \pmod{3} \\ A & n \neq 2 \pmod{3} \end{array} \right\}, \text{ for } 1 \le n$$

Thus, the proof is completed.

Lemma 3 Consider the difference equation

(5)
$$w_{n+1} = \left\{ \begin{array}{ll} \min\left\{A, \frac{w_n}{B}\right\} & n \equiv 2 \pmod{3} \\ \max\left\{A, \frac{w_n}{B}\right\} & n \neq 2 \pmod{3} \end{array} \right\}$$

Then every solution of (5) is eventually three periodic. Morever the following statements are true for $w_0 > 0$;

(a) If $B \in (-\infty, -1]$, then

$$w_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 0 \pmod{3} \\ \frac{A}{B^2} & n \equiv 1 \pmod{3} \\ A & n \equiv 2 \pmod{3} \end{array} \right\}, \text{ for } 2 \le n$$

(b) If $B \in (-1,0)$, then

$$w_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 0 \pmod{3} \\ A & n \neq 0 \pmod{3} \end{array} \right\}, \text{ for } 2 \leq n$$

Proof. (a) Let $B \in (-\infty, -1]$ and $0 < w_0$. If $w_1 = A$ or $w_1 = \frac{w_0}{B}$, then, certainly, $w_2 = \min\left\{A, \frac{A}{B}\right\} = \min\left\{A, \frac{y_0}{B^2}\right\} = A$, $w_3 = \max\left\{A, \frac{A}{B}\right\} = \frac{A}{B}$ and $w_4 = \max\left\{A, \frac{A}{B^2}\right\} = \frac{A}{B^2}$. By induction we get

$$w_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 0 \pmod{3} \\ \frac{A}{B^2} & n \equiv 1 \pmod{3} \\ A & n \equiv 2 \pmod{3} \end{array} \right\}, \text{ for } 2 \le n$$

It is eventually three periodic.

(b) Let $B \in (-1,0)$, then $w_1 = \max\left\{A, \frac{y_0}{B}\right\} = A$ or $w_1 = \max\left\{A, \frac{y_0}{B}\right\} = \frac{y_0}{B}$, But certainly $w_2 = \min\left\{A, \frac{A}{B}\right\} = \min\left\{A, \frac{y_0}{B^2}\right\} = A$. Then $w_3 = \max\left\{A, \frac{A}{B}\right\} = \frac{A}{B}$ and $w_4 = \max\left\{A, \frac{A}{B^2}\right\} = A$ and $w_5 = \min\left\{A, \frac{A}{B}\right\} = A = w_2$. Hence by induction we obtain

$$w_n = \left\{ \begin{array}{ll} \frac{A}{B} & n \equiv 0 \pmod{3} \\ A & n \neq 0 \pmod{3} \end{array} \right\}, \text{ for } 2 \leq n$$

Also, It is easy to see that it is eventually three periodic. The proof is completed.

Theorem 3. Consider (1). If A, B < 0, then every solution of (1) is eventually six periodic.

Proof. (a) Let $0 < x_0, x_{-1}$, then we have $0 < x_{3n}$ and $x_{3n+1} < 0 < x_{3n+2}$ for 0 < n.

We can multiply (1) by x_n and use the equality $w_n = x_n x_{n-1}$ to obtain (5). Since all conditions of Lemma 3 are satisfied, we see that in this case the sequence w_n is eventually three periodic. It means that each solution (x_n) of (1) is eventually six periodic in this case.

(b) Let $x_0 < 0$ and $x_{-1} \epsilon R - \{0\}$, then we easily write $x_{3n} < 0 < x_{3n+1}$, x_{3n+2} for $0 \le n$.

We can multiply (1) by x_n and use the substitution $y_n = x_n x_{n-1}$, to obtain (4). Since all conditions of Lemma 2 are satisfied we see that in this case the sequence y_n is eventually three periodic. We can say that each solution (x_n) of (1) is eventually six periodic.

(c) Finally, let $x_{-1} < 0 < x_0$, then we have $0 < x_{3n}$ and $x_{3n+2} < 0 < x_{3n+1}$ for $0 \le n$.

We can multiply (1) by x_n and use $y_n = x_n x_{n-1}$. Therefore we obtain (3). Since Lemma 1 is satisfied, in this case, every solution (y_n) of (3) is eventually three periodic. It means that each solution (x_n) of (1) is eventually six periodic. The proof is completed.

2.4. Case IV 0 < A, B. In this section we consider the behaviour of the solutions of (1) in the case 0 < A, B. Prior to investigating the behaviour of the solutions of (1), we prove two auxiliary results.

Firstly, let $0 < x_{-1}, x_0$, then $0 < x_n$ for $-1 \le n$, which is each solution of (1). We can multiply (1) by x_n use the change $y_n = x_n x_{n-1}$. We obtain the equation

(6)
$$y_{n+1} = \max\left\{A, \frac{y_n}{B}\right\}, \quad 0 \le n$$

where 0 < A, B and $0 < y_0$.

Secondly, let $x_{-1}, x_0 < 0$, then $x_n < 0$ for $-1 \le n$, which is each solution of (1). We can multiply (1) by x_n and use the equality $y_n = x_n x_{n-1}$. We obtain the equation

(7)
$$y_{n+1} = \min\left\{A, \frac{y_n}{R}\right\}, \quad 0 \le n$$

where 0 < A, B and $0 < y_0$.

Lemma 4 Consider (6). Then the following statements are true;

- (a) Let $1 \leq B$, then each solution y_n of (6) is eventually constant.
- (b) Let $B \in (0,1)$, then each solution y_n of (6) is eventually satisfies the difference equation $y_{n+1} = \frac{y_n}{B}$.

Proof. (a) Let, 1 < B. If $y_0 \in (0, AB]$, then $y_1 = A$. Since $\frac{y_0}{B} \le A$, it follows $\frac{y_1}{B} < A$ which implies $y_2 = A$. By induction we have $y_n = A$ for $1 \le n$.

If $AB < y_0$, then $y_1 = \frac{y_0}{B}$. If $\frac{y_0}{B^2} \le 1$, then $y_2 = A$ and consequently $y_n = A$ for $2 \le n$. In contrary $y_2 = A^2 y_0$. Since 1 < B, we have $B^n \to \infty$ as $n \to \infty$. Hence, there is a number $n_0 \in N$ such that $\frac{y_0}{B^{n_0}} \le A$ and $A < \frac{y_0}{B^{n_0-1}}$. It is easy to see that $y_n = A$ for $n_0 \le n$, as desired.

If B = 1, then $y_0 \in (0, A]$, we have $y_1 = A$ and consequently $y_n = A$ for $1 \le n$.

If $A < y_0$, then $y_1 = y_0$, $1 < y_0$ and by induction $y_n = y_0$ for $0 \le n$, that want to prove.

(b) If $y_0 \in (0, AB]$, then $y_1 = A$. Further, $y_2 = \max\{A, \frac{y_1}{B}\} = \frac{y_1}{B}$, $A < \frac{y_1}{B} = \frac{A}{B}$. By induction we obtain $y_n \leq y_{n+1}$ for $1 \leq n$ which implies $y_{n+1} = \frac{y_n}{B}$ for $1 \leq n$.

If $AB < y_0$, then $y_1 = \frac{y_0}{B}$, $A < \frac{y_0}{B}$. From, this it follow, that $y_{n+1} = \frac{y_n}{B}$ for $0 \le n$. The proof is completed.

The following lemma can be considered as a dual result of Lemma 4.

Lemma 5 Consider (7) Then the following statements are true;

- (a) Let 1 < B, then each solution y_n of (7) is eventually satisfies the difference equation $y_{n+1} = \frac{y_n}{B}$.
 - (b) Let $B \in (0,1]$, then each solution y_n of (7) is eventually constant.

Proof. (a) If $AB < y_0$, then $y_1 = A$ and $y_2 = \min \left\{ A, \frac{y_1}{B} \right\} = \frac{y_1}{B} = \frac{A}{B}, \frac{A}{B} < A$. Hence, by induction, we get $y_{n+1} = \frac{y_n}{B}$ for $1 \le n$.

If $y_0 \in (0, AB]$, then $y_1 = \frac{y_0}{B}$, $\frac{y_0}{B} \leq A$ and $y_2 = \min \left\{A, \frac{y_1}{B}\right\} = \frac{y_1}{B} = \frac{y_0}{B^2}$. Thus by induction $y_{n+1} = \frac{y_n}{B}$ for $0 \leq n$.

(b) Let $B \in (0,1)$. If $AB < y_0$, then it follows $y_1 = A$ and $y_2 = \min \left\{ A, \frac{A}{B} \right\} = A < \frac{A}{B}$. It is easy to see that $y_n = A$ for $1 \le n$.

If $y_0 < AB$, then $y_1 = \frac{y_0}{B}$ and If $AB^2 \le y_0$ then $y_2 = A$. Hence we get $y_n = A$ for $2 \le n$. If $y_0 < AB^2$, then Since $B \in (0,1)$, $B^n \to \infty$ as $n \to \infty$. Hence, There is an $m_0 \epsilon N$ such that $AB^{m_0} \leq y_0$ and $y_0 < AB^{m_0-1}$. For such chosen m_0 we have $y_{m_0} = A$, which implies $y_n = A$ for $m_0 \le n$.

Finally, Let B=1 and If $A \leq y_0$, then $y_1=A$ and $y_2=\min\{A,y_1\}=A=$ y_1 . Hence we get $y_n = A$ for $1 \le n$. If $y_0 \in (0, A)$, then $y_1 = y_0, y_0 < A$ and $y_2 = \min\{A, y_1\} = y_1 = y_0$. Hence we obtain that $y_n = y_0$ for $0 \le n$. The proof is completed.

Theorem 4 Consider (1), with 0 < A, B.

a) If $0 < x_0, x_{-1}, x_1 = \frac{A}{x_0}$ and $1 \le B$, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, \dots)$$

b) If $0 < x_0, x_{-1}, x_1 = \frac{A}{x_0}$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{X_0}{B}, \frac{A}{Bx_0}, \frac{X_0}{B^2}, \dots, \frac{A}{B^{n-1}x_0}, \frac{X_0}{B^n}, \dots)$$

c) If $0 < x_0, x_{-1}, x_1 = \frac{x_{-1}}{B}$ and $1 \le B$, then (x_n) is eventually two periodic. d) If $0 < x_0, x_{-1}, x_1 = \frac{x_{-1}}{B}$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{x_0}{B^2}, \dots, \frac{x_{-1}}{B^n}, \frac{x_0}{B^n}, \dots)$$

e) If $x_{-1}, x_0 < 0$, $x_1 = \frac{A}{x_0}$ and 1 < B, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{A}{Bx_0}, \frac{x_0}{B^2}, \dots, \frac{A}{B^{n-1}x_0}, \frac{x_0}{B^n}, \dots)$$

f) If $x_{-1}, x_0 < 0$, $x_1 = \frac{A}{x_0}$ and $0 < B \le 1$, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, \dots)$$

g) If $x_{-1}, x_0 < 0$, $x_1 = \frac{x_{-1}}{B}$ and 1 < B, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{x_0}{B^2}, \dots, \frac{x_{-1}}{B^n}, \frac{x_0}{B^n}, \dots)$$

- h) If $x_{-1}, x_0 < 0$, $x_1 = \frac{x_{-1}}{B}$ and $0 < B \le 1$, then (x_n) is eventually two periodic.
 - i) If $x_{-1} < 0 < x_0 \text{ and } 1 \le B$, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, \dots)$$

j) If $x_{-1} < 0 < x_0$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{A}{Bx_0}, \frac{x_0}{B^2}, \dots, \frac{A}{B^{n-1}x_0}, \frac{x_0}{B^n}, \dots)$$

k) If $x_0 < 0 < x_{-1}$ and $1 \le B$, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \dots)$$

l) If $x_0 < 0 < x_{-1}$ and 0 < B < 1, then

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{A}{x_{-1}}, \frac{x_{-1}}{B^3}, \frac{A}{Bx_{-1}}, \dots, \frac{x_{-1}}{B^n}, \frac{A}{B^{n-2}x_{-1}}, \dots)$$

Proof. (a), (b) Let $0 < x_{-1}, x_0$ and $x_1 = \frac{A}{x_0}$. If $1 \le B$, then $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0 \max\left\{1, \frac{1}{B}\right\} = x_0$, $0 < x_0$ and $x_3 = \max\left\{\frac{A}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \max\left\{1, \frac{1}{B}\right\} = \frac{A}{x_0}$. By induction, we obtain $x_{2n} = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0$ and $x_{2n-1} = \max\left\{\frac{A}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, ...)$$

If 0 < B < 1 and $x_1 = \frac{A}{x_0}$, then $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = \frac{x_0}{B}$, $0 < \frac{x_0}{B}$, $x_3 = \max\left\{\frac{AB}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \max\left\{B, \frac{1}{B}\right\} = \frac{AB}{x_0}$ and $x_4 = \max\left\{\frac{x_0}{B}, \frac{x_0}{B^2}\right\} = \frac{x_0}{B^2}$. By induction we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{A}{B^{n-1}x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{A}{Bx_0}, \frac{x_0}{B^2}, \dots, \frac{A}{B^{n-1}x_0}, \frac{x_0}{B^n}, \dots)$$

(c), (d) Let $0 < x_{-1}, x_0$, then $x_1 = \frac{x_{-1}}{B}$. The case when $\frac{A}{x_0} < \frac{x_{-1}}{B}$ and $1 \le B$ is more complicated. Because $0 < x_n$ for $-1 \le n$, we can multiply (1) by (x_n) and use the substitution $y_n = x_n x_{n-1}$, we obtain (6). Since all conditions of Lemma 4 are satisfied we see that the sequence (y_n) is eventually constant. It means that each solution (x_n) of (1), in the case, is eventually two periodic. If 0 < B < 1 and $x_1 = \frac{x_{-1}}{B}$, then $\frac{AB}{x_{-1}} < x_0$, $\frac{AB}{x_{-1}} < x_0 < \frac{x_0}{B}$ and $\frac{AB}{x_0} < \frac{x_{-1}}{B} < \frac{x_{-1}}{B^2}$. Hence $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{x_0}{B}$, and $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B^2}$. By induction, we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{x_{-1}}{B^n}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{x_0}{B^2}, \dots, \frac{x_{-1}}{B^n}, \frac{x_0}{B^n}, \dots)$$

(e), (f) Let $x_{-1}, x_0 < 0$, then $x_n < 0$ for $-1 \le n$. If 1 < B and $x_1 = \frac{A}{x_0}$, then $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0 \min\left\{1, \frac{1}{B}\right\} = \frac{x_0}{B}$ and $x_3 = \max\left\{\frac{AB}{x_0}, \frac{A}{Bx_0}\right\} = x_0 \min\left\{1, \frac{1}{B}\right\}$

 $\frac{A}{x_0} \min \left\{ B, \frac{1}{B} \right\} = \frac{A}{Bx_0} \text{ and } x_4 = \max \left\{ Bx_0, \frac{x_0}{B^2} \right\} = x_0 \min \left\{ B, \frac{1}{B^2} \right\} = \frac{x_0}{B^2}, \frac{x_0}{B^2} < 0$. By induction, we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{A}{B^{n-1}x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{A}{Bx_0}, \frac{x_0}{B^2}, \dots, \frac{A}{B^{n-1}x_0}, \frac{x_0}{B^n}, \dots)$$

If $0 < B \le 1$ and $x_1 = \frac{A}{x_0}$, then $x_2 = \max\{x_0, \frac{x_0}{B}\} = x_0, \frac{x_0}{B} < x_0$ and $x_3 = \max\{\frac{A}{x_0}, \frac{A}{Bx_0}\} = \frac{A}{x_0} \min\{1, \frac{1}{B}\} = \frac{A}{x_0}$, Using induction we get $x_{n+1} = \frac{A}{x_n}$ for $1 \le n$. That is

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, \dots)$$

(g), (h) Let $x_{-1}, x_0 < 0$, then $x_n < 0$ for $-1 \le n$. If 1 < B and $x_1 = \frac{x_{-1}}{B}$, then $x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{x_0}{B}$ and $x_3 = \max\left\{\frac{AB}{x_0}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B^2}$. By induction we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{x_{-1}}{B^n}$ for $1 \le n$, that is

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{x_0}{B}, \frac{x_{-1}}{B^2}, \frac{x_0}{B^2}, \dots, \frac{x_{-1}}{B^n}, \frac{x_0}{B^n}, \dots)$$

If $x_{-1}, x_0 < 0$, $x_1 = \frac{x_{-1}}{B}$ and $0 < B \le 1$, then since $x_n < 0$ for $-1 \le n$, we can multiply (1) by (x_n) and use the change $y_n = x_n x_{n-1}$, we obtain that the sequence (y_n) satisfies (7) and $0 < y_n$ for $0 \le n$. Since 0 < B < 1 by Lemma 2 we obtain that (y_n) is eventually constant. which implies that (x_n) is eventually two periodic.

(i), (j) Let $x_{-1} < 0 < x_0$, then $x_1 = \max\left\{\frac{A}{x_0}, \frac{x_{-1}}{B}\right\} = \frac{A}{x_0}, \frac{x_{-1}}{B} < 0 < \frac{A}{x_0}$. If $1 \le B$, then $x_2 = \max\left\{x_0, \frac{x_0}{B}\right\} = x_0 \max\left\{1, \frac{1}{B}\right\} = x_0$ and $x_3 = \max\left\{\frac{A}{x_0}, \frac{A}{Bx_0}\right\} = \frac{A}{x_0} \max\left\{1, \frac{1}{B}\right\} = \frac{A}{x_0} = x_1$. Hence, by induction, we write $0 < x_n$ and $x_{n+1} = \frac{A}{x_n}$ for $0 \le n$. That is

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, x_0, \frac{A}{x_0}, \dots)$$

If 0 < B < 1, then $x_1 = \frac{A}{x_0}$ and $x_2 = \max\{x_0, \frac{x_0}{B}\} = \frac{x_0}{B}$ and $x_3 = \max\{\frac{AB}{x_0}, \frac{A}{Bx_0}\} = \frac{A}{x_0} \max\{B, \frac{1}{B}\} = \frac{A}{Bx_0}$ and $x_4 = \max\{Bx_0, \frac{x_0}{B^2}\} = \frac{x_0}{B^2}$. Hence, by induction, we get $x_{2n} = \frac{x_0}{B^n}$ and $x_{2n-1} = \frac{A}{B^{n-1}x_0}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{A}{x_0}, \frac{x_0}{B}, \frac{A}{Bx_0}, \frac{x_0}{B^2}, \dots, \frac{A}{B^{n-1}x_0}, \frac{x_0}{B^n}, \dots)$$

(k), (l) Let $x_0 < 0 < x_{-1}$, then $0 < x_n$ for $1 \le n$. Also $x_1 = \max\left\{\frac{A}{x_0}, \frac{x_{-1}}{B}\right\} = \frac{x_{-1}}{B}, \frac{A}{x_0} < 0 < \frac{x_{-1}}{B} \text{ and } x_2 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B}\right\} = \frac{AB}{x_{-1}}, \frac{x_0}{B} < 0 < \frac{AB}{x_{-1}}.$

If $1 \leq B$, then $x_3 = \max\left\{\frac{A}{x_2}, \frac{x_1}{B}\right\} = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B} \max\left\{1, \frac{1}{B}\right\} = \frac{x_{-1}}{B}$ and $x_4 = \max\left\{\frac{AB}{x_{-1}}, \frac{x_0}{B^2}\right\} = \frac{AB}{x_{-1}}$. Hence, by induction, we get $x_{2n} = \frac{AB}{x_{-1}}$ and $x_{2n-1} = \frac{x_{-1}}{B}$ for $1 \leq n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \dots)$$

If 0 < B < 1, then $x_1 = \frac{x_{-1}}{B}$ and $x_2 = \frac{AB}{x_{-1}}$ and $x_3 = \max\left\{\frac{x_{-1}}{B}, \frac{x_{-1}}{B^2}\right\} = \frac{x_{-1}}{B} \max\left\{1, \frac{1}{B}\right\} = \frac{x_{-1}}{B^2}$ and $x_4 = \max\left\{\frac{AB^2}{x_{-1}}, \frac{A}{x_{-1}}\right\} = \frac{A}{x_{-1}} \max\left\{B^2, 1\right\} = \frac{A}{x_{-1}}$. Hence, by induction, we get $x_{2n} = \frac{A}{B^{n-2}x_{-1}}$ and $x_{2n-1} = \frac{x_{-1}}{B^n}$ for $1 \le n$, that is,

$$(x_n) = (x_{-1}, x_0, \frac{x_{-1}}{B}, \frac{AB}{x_{-1}}, \frac{x_{-1}}{B^2}, \frac{A}{x_{-1}}, \frac{x_{-1}}{B^3}, \frac{A}{Bx_{-1}}, \dots, \frac{x_{-1}}{B^n}, \frac{A}{B^{n-2}x_{-1}}, \dots)$$

References

- 1. Amleh, A. M., Hoag, J., Ladas, G.(1998): A difference equation with eventually periodic solutions, Comput. Math. Appl., 36 (10-12), 401-404.
- 2. Çınar, C., Strevic, S., Yalçınkaya, İ. (2005): On the positive solutions of a reciprocal difference equation with minimum, J. Appl. Math. & Computing 17, 307-314.
- $3.\,$ Ladas, G. (1996): Open problems and conjectures, Diff. Equations Appl., 2, 339-341.
- 4. Ladas, G. (1998): Open problems and conjectures, Diff. Equations Appl., 4, 312.
- 5. Mishev, D. P., Patula, W. T. (2002): A reciprocal difference equation with maximum, Comput. Math. Appl., 43, 1021-1026.
- 6. Mishkis, A. D. (1977): On some problems of the theory of differential equations with deviating argument, UMN, 32:2 (194), 173-202.
- 7. Popov, E. P.(1966): Automatic regulation and control, Moscow, (in Russian).
- 8. Stevic, S.(2001): On the recursive sequence $x_{n+1} = -\frac{1}{x_n} + \frac{A}{x_{n-1}}$, Int. J. Math. Sci., 27 (1), 1-6.
- 9. Stevic, S. (2002): A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math., 33 (1), 45-53.
- 10. Stevic, S. (2002): On the recursive sequence $x_{n+1} = g(x_n, x_{n-1})/(A + x_n)$, Appl. Math. Lett., 15, 305-308.