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Summary. The modified stationary iterative methods of the solu-
tion of system of the linear algebraic equations (SLAE) are consid-
ered. For SLAE with a three-diagonal matrix with constant factors it
is shown, that eigenvalues of modified matrices or the operator, par-
ticipating in series of simple iteration, are expressed through roots
of Chebyshev polynomials of the second kind. On this basis strict
expressions through factors of an initial matrix for optimum param-
eter of convergence and spectral radius are found. So for Successive
Overrelaxation method strict expression for the optimum parameter
of convergence ω0 laying on an interval (0, 2) is found. It is shown,
that convergence of the optimum modified series essentially improves.
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are esteemed. Here A = (aij), i, j = 1, 2, . . . , n is an n-dimensional
regular matrix ( it is specify by notes to formula (8)), b ∈ Cn is a
given vector, x is a vector in the question.

Many iterative methods can be shown to process of simple iter-
ation. Thus the input equation by that or different way should be
shown to an equation

(2) x = Bx + z.

Here x- unknown vector, z- given vector on the right of the line
of equation, B - given matrix of factors. For example, if SLAE (1) is
set, directly receiving

(3) B = I − A,

where I- unit matrix, we come to (2). Let’s remark, that the transition
from (1) to (2) can be executed not by an alone way, that results in
different modifications of a method of simple iteration - Richardson
method, Jacobi method, Gauss-Seidel method, etc. [1]

The process of simple iteration is as follows:

(4) x(m+1) = Bx(m) + b, m = 0, 1, . . . .

Generally, the initial guess to the solution is x(0) = b.
It is demonstrated [2], that an indispensable and sufficient condi-

tion of convergence of process of simple iteration (4) is

(5) ρ(B) < 1,

where ρ = ρ(B) = maxi |βi| - spectral radius of a matrix B, βi -
eigenvalues of matrix B. Thus the iterations converge not worse than
geometrical progression with a denominator q = ρ(B).

Thus, on acceleration of convergence of a method of simple itera-
tion, the equation (1) we shall write down equivalently

(6) x = Bkx +
b

1 + k
,

where the matrix Bk is determined by the formula

(7) Bk =
1

1 + k
(B + kI).

Here k- while any, k �= −1, complex parameter which choice we shall
try to satisfy a condition ρ(Bk) < ρ(B) or ρ(Bk) < 1 in case (5) it is
not executed.



Optimum spectral parameter and convergency 91

The approach (6), (7) has been successfully applied for accelera-
tion of convergence (4) in case, when B- the linear continuous oper-
ator in Banah space [3].

Thus we yet do not consider an opportunity of occurrence so-called
ε- spectrum at a matrix [4]. In other words, it is supposed, that the
machine constant εcomp is chosen enough small that it was possible
to neglect an opportunity of occurrence of a pseudo-spectrum.

Let’s consider SLAE (1) with a three-diagonal matrix A and B of
a kind

(8) A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a1

a−1 a0 a1 O
. . . . . . . . .
O a−1 a0 a1

a−1 a0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

d b
a d b O

. . . . . . . . .
O a d b

a d

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If in (4) B- the operator, instead of a matrix, as in Seidel method,
the matrix, its generating has the same three-diagonal structure (8).
Everywhere further it is supposed, as product ab is real and in items
1, 2 a0 is real too.

The matrix of such kind frequently arises at the solution of the
ordinary differential equations, and also is a component of matrixes
at the solution of initial-boundary value problems for the differential
equations.

Let’s find strict conditions of convergence and optimum parame-
ters for acceleration of convergence for stationary iterative methods
at the solution of SLAE with such matrix.

1. Method of simple iteration (Richardson method)

If in a method of simple iteration it is applied (3) it refers to as a
Richardson method [1]. In this case d = 1 − a0, a = −a−1, b = −a1 .

Let’s find a spectrum of a square n-dimensional matrix B. The
characteristic equation Bx = λx results in the equation dn = 0,
where a determinant dn of a kind

(1.1) dn = det(B − λI).

Displaying a determinant on the first line, it is easy to receive the
recurrent formula

(1.2) dn = (d − λ)dn−1 − abdn−2, n = 3, 4, . . . .
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Initial values follow from (1.1): d1 = d − λ, d2 = (d − λ)2 − ab.
Further, with the help (1.2), we receive d3 = (d− λ)((d− λ)2 − 2ab),
d4 = (d − λ)4 − 3ab(d − λ)2 + a2b2 and so on.

Let’s enter replacement of a variable

(1.3) (d − λ)2 = μab.

Then determinants correspond as

d1 = d − λ,

d2 = (μ − 1)ab,

d3 = (d − λ)(μ − 2)ab,

d4 = (d − λ)2(μ − 2)ab − (μ − 1)a2b2 = (μ2 − 3μ + 1)a2b2,

etc.
It is easy to notice, that each odd determinant, due to (1.2) has a

multiplier (d−λ), and everyone even due to replacement of a variable
(1.3) raises a degree μ on unit. I.e. (m = 1, 2, . . .),

(1.4) d2m = (ab)mPm(μ); d2m+1 = (d − λ)(ab)mQm(μ),

where Pm(μ) and Qm(μ) - polynomials of a variable μ degree m.
For them, taking into account (1.2), we receive recurrent formulas
(m = 1, 2, . . .),

(1.5) Pm(μ) = μQm−1(μ) − Pm−1(μ); Qm(μ) = Pm(μ) − Qm−1(μ).

Whence it is easy to receive recurrent formula only for polynomials

(1.6) Qm(μ) = (μ − 2)Qm−1(μ) − Qm−2(μ), m = 3, 4, . . . .

and
Q1(μ) = μ − 2, Q2(μ) = μ2 − 4μ + 3, . . . .

Let’s make replacement of a variable

(1.7) μ = 2(x + 1).

Then polynomials (1.6) pass in the following

(1.8) tm(x) = 2xtm−1(x) − tm−2(x), m = 3, 4, . . .

and t1(x) = 2x; t2(x) = 4x2 − 1, . . . .
These are well-known orthogonal Chebyshev polynomials of the

second kind with roots on interval x ∈ (−1, 1) [2].

(1.9) tm(x) = sin((m + 1) arccos(x))/
√

1 − x2.
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Hence, (1.6) - the same Chebyshev polynomials of the second kind,
but with roots on a piece μ ∈ (0, 4).

Thus, for eigenvalues of a matrix B the following theorem is fair

Theorem 1. Eigenvalues of n− dimensional matrix B (3), (8) are:
1. λ

(1,2)
ν = d ±√

μνab,

(1.10) μν = 2(xν + 1), xν = cos (
2πν

n + 1
), ν = 1, 2, . . . , [n/2].

2. In case of odd n there exists an additional root λ0 = d.
Here μν , xν- roots of Chebyshev polynomial of second kind (1.8), (1.9)
in case of odd value of n = 2m+1, m = 1, 2, . . . and roots of equation
tm−1(x) + tm(x) = 0 in case of even value n = 2m, m = 1, 2, . . .; [x]
is an integer part function of x.

The proof. By virtue the first formula of (1.4), second one of (1.5)
and (1.6 - 1.8) roots of even determinants n = 2m, m = 1, 2, . . . are
roots of the equation tm−1(x)+ tm(x) = 0. Taking into account (1.9),
we receive the equation sin ((m + 0.5) arccos x) = 0 for all roots, ex-
cept for x = 1 which in view of feature in a denominator (1.9) results
in finite value m + 0.5 and which should be rejected therefore. We
received for roots in this case (m+0.5) arccos x = πν, ν = 1, 2, . . . , m,
m = n/2 and from here follows (1.10).

For odd determinants n = 2m + 1, m = 1, 2, . . . valid (1.4), (1.6),
(1.9) it is received d2m+1 = 0, and therefore λ0 = d and tm(x) = 0,
i.e. (m + 1) arccos x = πν, ν = 1, 2, . . . , m, m = [n/2]. From values ν
are excluded ν = 0, ν = m+1, since disclosing of uncertainty in (1.9)
at x = ±1 results in finite, nonzero value. In result for roots in this
case it is received (1.10). Further, with the aid of (1.3) the theorem
is proved.

Consequence 1. Spectral radius of a matrix (3), (8) is

(1.11) ρ(β) = max
ν

|λν | =
{ |d| + √

μmaxab, for ab > 0;

√|d|2 − μmaxab, for ab < 0.

Really, in figure 1 the typical behavior of two branches of func-
tion f(x) = |d ± √

μx| is shown. From here follows, by virtue of
monotonous increase of the top branches of function, since x = 0,
that maxν |λν | comes for the maximal root μν on an interval (0,4) at
ν = 1 . I.e. for μ1 = μmax = 2(xmax + 1) and

(1.12) xmax = cos (
2π

n + 1
)
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Fig. 1.

Here xmax = x1 is a maximal root of Chebyshev polynomial tm(x) of
second kind (1.8), (1.9) in case of odd value of n = 2m+1, m = 1, 2, . . .
and it is the maximal root of equation tm−1(x) + tm(x) = 0 in case
of even value n = 2m, m = 1, 2, . . ..

Further, the analysis of behavior |λmax| in dependence from ab
results to (1.11). In figure 1 value |λ0| = |d| which is not considered
for (1.12) because of it is always less than value of the greater branch
is shown also.

Consequence 2. Convergence of a method of simple iteration for
a matrix (3),(8) takes place only for |d| < 1 and thus for very narrow
circle of the values ab set (1.11) and ρ < 1. For the big matrices
n → ∞ in (1.11) it is necessary to substitute μmax → 4.

2. Optimal method of simple iteration (Optimal
Richardson method)

For matrix (7) similarly to how it has been made in item 1, we receive

Theorem 2. Eigenvalues of n− dimensional matrix (3), (8), (7) are
(m = 1, 2, . . .):

(2.1) λ(1,2)
ν =

1
k + 1

(d + k ±
√

μνab);

2. In case of odd n there exists an additional root

λ0 =
d + k

1 + k
.

Here μν = 2(xν + 1) and xν sets by formula (1.10).
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Fig. 2.

Eigenvalue λ0 by search of optimal parameter for convergence
(1.4) with B = Bk can be rejected, because |λ0| ≤ |λν |.
Theorem 3. Optimal parameter for convergence (1.4) with a matrix
(3),(8),(7) and spectral radius of a matrix at this optimal parameter
are:

(2.2)
1. For ab > 0 k0 = −d, ρ(Bk0) =

√
μmaxab/|d − 1|;

2. for ab < 0 k0 = −d + μmaxab
1−d , ρ(Bk0) = 1√

1− (1−d)2

μmaxab

.

Really, as well as at the proof of the theorem 1, maxν |λν | comes for
the maximal root μmax. Further, in fig. 2 the typical behavior of two
branches of function |λmax| from parameter k in (2.1) and definitions
of spectral radius k0 in cases ab > 0 and ab < 0 are submitted. In a
case ab > 0 for a choice k0 it is necessary to take a point of crossing
of two branches of function that leads to item 1 in (2.2), and in a case
ab < 0 both branches coincide and it is necessary to find a minimum
with the help of a derivative that leads to item 2 in (2.2).

Consequence. The optimal parameter for convergence of the
modified method of simple iteration in a case ab > 0 does not depend
on factors a, b and is given by the simple formula k0 = −d = a0 − 1.
Convergence takes place at a ratio between factors

√
μmab < |1− d|,

i.e. in terms of matrix A:

(2.3) μma−1a1 < a2
0.

In a case ab < 0 convergence at optimal parameter takes place for
any a, b.
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3. The Jacobi, Gauss-Seidel and Optimal Successive
Overrelaxation method

We shall present A = D+L+U , where D, L, U represent the diagonal,
the strictly lower-triangular and the strictly upper-triangular parts
of a matrix A (1), respectively.

The Gauss-Seidel method [1] assumes recording the initial equa-
tion Ax = b as

(3.1) x = Bx + z,

where B = −D−1(L+U) - a matrix with a zero main diagonal d = 0
with factors bij = −aij

aii
, i, j = 1, 2, . . . , n; i �= j. Components of a

vector zi = yi
aii

. Further process of iterations is as follows

(3.2) x(m+1) = B̂Sx(m) + z, m = 0, 1, . . . .

Here B̂S - the Gauss-Seidel (GS) operator, which influence on a
vector of the previous iteration x(k) is divided on two parts, in first
of which components of a vector x(k+1) already found on the current
iteration are used

(3.3) B̂Sx(m) = −D−1Lx(m+1) − D−1Ux(m).

If in (3.2) the matrix B = −D−1(L + U), instead of the operator
(3.3) is used, such method is known as Jacobi method [1]. In case of
three-diagonal SLAE conditions of convergence of usual and optimal
Jacobi methods, and also spectral radii and optimal parameter it is
possible to receive from formulas (1.11) and (2.2) at d = 0. We shall
take into account, that in Jacobi method factors of matrix (8) are a =
−a−1/a0, b = −a1/a0. The analysis of the above formulas shows that
usual Richardson method conceded in the domain of convergence to
usual Jacobi method whereas conditions of convergence and spectral
radii for optimum Richardson and Jacobi methods coincide.

The result of influence of the operator B̂S on a vector x(m), i.e. a
vector B̂Sx(m), can be received by multiplication of some matrix BS

on x(m) . Then BS = −(D + L)−1U and z = −(D + L)−1b

(3.4) B̂Sx(m) = BSx(m).

However, processes occurring in the left and right parts of equal-
ity (3.4) are essentially various. To notice, that the matrix B (3.1),
which generate the operator B̂S , in case of three-diagonal SLAE has
the main zero diagonal and two nonzero diagonals, but the matrix
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BS contains the lower triangular with unequal to zero the main di-
agonal and with equal to zero the first column matrix . Quantity of
arithmetic operations of multiplication at the left and on the right in
(5) are also essentially various. So, it is - 2(n− 1) and n(n + 1)/2− 1
respectively.

Nevertheless, it is possible to show that the operator has the same
eigenvalues, as a matrix in (3.4) (at least, for a three-diagonal case
under consideration). However, if to set the task of acceleration of
convergence (3.2) the optimum spectral parameter for a matrix in
(3.4) and the optimum parameter for the operator (3.3) as will be
shown further, various.

Let B be a matrix with any (generally speaking, distinct from
zero) the main diagonal. Action of the operator B̂ generated by this
matrix, we shall determine by analogy with (3.3) with that distinc-
tion, that U - the upper- triangular matrix including the main diag-
onal. Thus, new coordinates of a vector are determined as

(3.5) xi =
n∑

j=1

bijxj , i = 1, 2, . . . , n.

And old coordinates in the right part (3.5) in process of growth i
are replaced on new, found in the left part.

For acceleration of convergence (4) we shall use (6), (7), where
Bk we should replace on B̂k - modified GS operator corresponding to
matrix (7)

(3.6) B̂k =
1

1 + k
(B̂ + kI).

In the matrix form the result of influence of the operator (3.6) can
be received with the help of the following matrix

(3.7) Bk = (L + (1 + k)D)−1(kD − U).

The set vector of the right part is transformed thus in

bk = (L + (1 + k)D)−1b.

As well as in case of a usual method at k = 0 the matrix (3.7) has
the same spectrum, as the operator (3.6).

An indispensable and sufficient condition

ρ(B) < 1, ρ(B) = max
i

|βi|

of convergence of process of simple iteration (4) are fair as the matrix
(3.7) with the same spectrum and resulting action is known, as well
as at the operator (3.6) [2].
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Let’s consider a spectrum of modified GS operator (3.6) in three-
diagonal case (8), and also conditions of convergence (4) at its par-
ticipation. Rename for simplicity of recording

(3.8) k/(1 + k) → k, a/(1 + k) → a, b/(1 + k) → b.

Lemma 1. Determinants dn of the characteristic equation B̂kx = λx
with the operator (3.6) satisfy to the recurrent formula

dn = (k − λ)dn−1 − abλdn−2.

Really, the determinant of the characteristic equation generally looks
like

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k − λ b 0 . . . 0
ak ab + k − λ b . . . 0
a2k ab + k ab + k − λ . . . 0
a3k a2b + k ab + k . . . 0
...

...
... . . .

...
an−2k an−3b + an−4k an−4b + an−5k . . . b
an−1k an−2b + an−3k an−3b + an−4k . . . ab + k − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Displaying a determinant dn on the last column, we receive

dn = (ab + k − λ)dn−1 − bad̃n−1.

Here d̃n−1 - a determinant which differs from dn−1 ones, that at it last
element is equal ab+k instead of ab+k−λ. Thus, d̃n−1 = dn−1+λdn−2

and, substituting it in dn, we receive the formulation of Lemma.
For example, at n = 2, the characteristic equation looks like{

kx1 + bx2 = λx1,
a(kx1 + bx2) + kx2 = λx2.

A determinant d2 = (k − λ)2 − abλ. Eigenvalues in this case, taking
into account (3.8)

(3.9) λ1,2(k) =
k

k + 1
+

ab

2(k + 1)2
(1 ±

√
1 +

4k(k + 1)
ab

).

The problem of acceleration of convergence will consist in min-
imization of spectral radius as functions of a variable k, i.e. it is
necessary to find optimum parameter k0 at which there comes a min-
imum

(3.10) ρ0(B) = min
k

ρ(B, k) = min
k

max
ν=1,2

|λν(k)| < 1.
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Fig. 3.

Research of function f(k) = |λi(k)| shows, that the minimum
(3.10) comes at real k, one of roots of a radicand in (3.9):

(3.11) k0 =
1
2
(
√

1 − ab − 1), ρ0(B) = |λi(k0)| =
|1 −√

1 − ab|2
|ab| .

Really, the behavior of both branches of function |λi(k)| depending
on k for a cases ab > 0 and ab < 0 is shown on fig. 3. It is possible
to show, that if the radicand in (3.9) has no roots which correspond
to k (it is a case ab > 1 ) branches |λi(k)| lay on the different sides
from a straight line λ = 1. If has one root (it is a case ab = 1)
branches are crossed in one point on λ = 1. In these cases convergence
is not present. If ab < 1, the radicand in (3.9) has two roots and
|λi(k1)λi(k2)| = 1, and for the right root k2 = k0 (3.11) is carried out
|λi(k0)| < 1. In points k = k1 and k = k2 two branches of function
merge in one and behave in dependence from ab as shown in fig. 3.

Thus, value ρ0 < 1 for everything ab < 1, that is much wider,
than for usual GS method, for which from (3.9) we have at k = 0 two
eigenvalues λ0 = 0, λ1 = ab and the spectral radius ρ(B) = |ab|. So,
the relation ρ0(B)/ρ(B) = ρ0(B)/|ab| < 1 for 0 < ab < 1 and it is
� 1 for ab < 0 .

For a case on the right part fig. 3; a = −1, b = 1 and for this case
k0 = 0.207, |λ(k0)| = 0.172, that testify too fast convergence of the
modified series. Thus f(0) = 1 and usual GS series does not converge.

For a case n = 3 it is similarly received, that a determinant is

d3 = (k − λ)((k − λ)2 − 2abλ),
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optimum parameter is k0 = (
√

1 − 2ab − 1)/2 and radius of conver-
gence is

ρ0(B) = |√1 − 2ab − 1|2/(2|ab|).
The inequality ρ0(B) < 1 is value when ab < 0.5. The root λ =
k/(k + 1) arising for odd determinants, is not taken into account, as
at k = k0 is carried out |k0/(k0 + 1)| = ρ0(B).

Using a recurrent formula (18), we receive expression for the fol-
lowing determinants

d4 = (k − λ)4 − 3abλ((k − λ)2 + (abλ)2,

d5 = (k − λ)((k − λ)4 − 4abλ((k − λ)2 + 3(abλ)2),

etc. We shall notice, that the determinants are the polynomials into
which even degrees of (k−λ) enter only, and in odd polynomials there
is a general multiplier (k − λ).

Let’s lead replacement of a variable λ on μ as follows

(3.12) (k − λ)2 = μabλ.

Note that λ �= 0 if k �= 0. In result for determinants it is received
d2m = (abλ)mPm(μ) and d2m+1 = (k−λ)(abλ)mQm(μ), m = 1, 2, . . . .
For these polynomials Pm(μ) and Qm(μ) in view of the Lemma 1 it is
received recurrent formula (1.5), whence it is easy to receive recurrent
formula for polynomials Qm(μ) (1.6). Replacement of a variable (1.7)
translates polynomials Qm(μ) in polynomials (1.8), (1.9) - tm(x), that
testifies to that, what is it the Chebyshev polynomials of second kind
with roots on intervals (0,4) and (-1,1) respectively. With the aid of
(3.12), from stated follows

Theorem 4. 1. Eigenvalues of modified GS operator (3.6), (3.3) in
n- dimensional case, n = 2, 3, . . . , are (ν = 1, 2, ..., [n/2]):

(3.13) λ(1,2)
ν (k) =

k

k + 1
+

μνab

2(k + 1)2
(1 ±

√
1 +

4k(k + 1)
μνab

).

In case of odd n there exists an additional root λ0 = k/(k +1) . Here
μν = 2(xν +1) and xν - the roots of Chebyshev polynomials of second
kind which sets by formula (1.10).

2. Optimum parameter for convergence of series (4) with modified
GS operator is

(3.14) k0 =
1
2
(
√

1 − μmaxab − 1),



Optimum spectral parameter and convergency 101

where μmax = 2(xmax + 1) and xmax - a maximal root of Chebyshev
polynomials of second kind, which sets by formula (1.12).

3. Spectral radius of optimum modified GS operator is

ρ(B̂k0) =
|1 −√

1 − μmaxab|2
μmax|ab| ,

For ab < 1/μmax and only for them optimum modified GS method
is convergent.

From (3.13) follows, that at k = 0, that is for usual GS opera-
tor, the least eigenvalue is λ0 = 0, and the greatest λ1 = λmax =
μmaxab. Therefore convergence of a usual method takes place for
|ab| < 1/μmax, that is significantly less then domain of convergence
of the optimum modified method.

The matrix in (3.4) has same eigenvalues and, if to set the task of
definition of optimum parameter for this matrix we shall receive, in
the case of real ab,

k0 = −λ1 + λ2

2
= −μmaxab

2
,

that essentially differs from (3.14).
The parameter μmax in (3.14) is in interval [1,4) that follows from

(1.12). The left value takes place at n = 2 , and right is a limit for
the big matrices at n → ∞.

In terms of matrix A (8) domain of convergency of modified GS
method is

a−1a1 <
a2

0

μmax
.

The same domain of convergence (2.3) has an optimum Richardson
method, but an optimum GS method always converges faster. In fig.
4 is shown the behavior of ρ(B̂k0) and ρ(Bk0) for this two methods
like functions of

x =
μmaxa−1a1

a2
0

.

In figure it accordingly ρS(x) and ρR(x). Here function of the attitude
of spectral radii y(x) = ρS(x)/ρR(x) is shown also.

The Modified GS Method described above is the Successive Over-
relaxation Method (SOR)[1] in other designations k = (1 − ω)/ω,
ω = 1/(k + 1). The result (3.14) for optimum parameter is in a good
agreement with the theorem Kahan [5], which shows that SOR fails
to converge if ω is outside the interval, i.e. if k is outside the in-
terval (−0.5,∞). From (3.14) follows, that the maximal domain of
convergence ab < 1/μmax corresponds to interval (−0.5,∞).
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Fig. 4.
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