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Summary. Explicit formulas for fundamental and generalized so-
lutions of the Cauchy problem for Maxwell’s system are obtained
for the case when the dielectric permeability is a symmetric posi-
tive definite matrix, the magnetic permeability is a positive constant,
the conductivity vanished. The visualization of electromagnetic wave
propagation made using these formulas by MatLAB, C++.
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1. Introduction

The mathematical models of wave dynamic processes inside anisotropic
electromagnetic bodies are described by Maxwell’s system of electro-
dynamics [1,2]. Electromagnetic properties of anisotropic electromag-
netic bodies are given by the matrices of material parameters

€ = (€ij)3x3, M= (Kij)3x3, T = (04j)3x3,
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versity, project 03.KB.FEN.049
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where €, u are positive definite; €, u are dielectric and magnetic prob-
abilities, o is the conductivity.

We note that isotropic materials are characterized by a special
form of €, p, 0. This is the following

e=¢el, p=ul, o=ol,

where I = diag(1,1,1) is the unit matrix, ¢ > 0, u > 0, o
are constants. All other forms of €, i, o, which are different from
the isotropic form, describe anisotropic materials. In this paper we
study the electromagnetic wave propagation in anisotropic materi-
als in which € = (€;;)3x3 is a symmetric positive definite matrix,
pw=upl, p>0Iisaconstant, o = 0.

The study of electromagnetic wave propagation in anisotropic ma-
terials is active research subject related to computer facilities, mea-
surement technologies, geophysics and others [3].

We will use the following notations, laws and constitutive relations

of electromagnetic theory:
E = (Ey,Es,E3), H = (Hi, Hs, H3) are electric and magnetic in-
tensity vectors, E; = Ej;(z,t), H; = Hj(z,t), j=1,2,3; x=
(x1,22,23) € R3, t € R; D is the electric displacement; B is the
magnetic induction; j is the current density; p is the density of electric
charges, c is the light velocity;

Op

En +divj =0

is the law of the conservation of electric charge;
D=eE, B=upH

are constitutive relations.
The complete set of Maxwell’s equations has the form

10D 4w, 10B

I.H=——+— I, F=————
curly, c@t+cJ’ curly, ot

dive,B =0, div,D = 4mp.
We assume in our paper that
E=0, H=0, p=0, j=0 for t<O0.

This means there is no electromagnetic field, currents or electric
charges at the time ¢t < 0.
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The Cauchy problem for Maxwell’s system may be stated as fol-
lows. Find an electromagnetic vector field E, H satisfying

_O0F < _OH
(1) curl, H = € +j, curl,E= —Br
(2) Eli<co=0, Hl|i<o=0,
where
_ € _ L L
e=S, m=2 3=y
c c c

We note that p and j are connected by

% = —divj.

Further we shall omit bars over letters €, u, j for simplicity of writ-
ing.

The section 2 of this paper is devoted to explicit formulas for
fundamental and some generalized solutions of (1), (2). The section 3
deals with simulation of the wave propagation using these formulas.
The section 4 contains some remarks and conclusions of our research.

2. Explicit formulas for generalized solutions of (1), (2)

Let € = (€;j)3x3 be a symmetric positive definite matrix with constant
elements, p be a positive number; W = e€~! be the inverse matrix to €;
j=ed(x)d(t), where d(t) is the Dirac delta function of one variable ¢,
§(x) = 6(x1)8(x2)6(w3), e is an unit vector of R3.

2.1. The reduction of (1) to systems for vector and scalar electric
potentials

We look for vector functions H and F in the form

(3) H = %curlwA, E = _%_il + V.0,

where A is a vector function and ¢ is a scalar function depending on
(z,t) € R Substituting (3) into (1) we find

0?A 1 5} 1
4 — — —ALA—€e—V, —V, divgA =j.
(4) €52 " eatV ¢+ MV div j
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Choosing the vector function @ = V¢ such that the following equal-
ities hold

0

(5) 528 = KV.divyA, 8, =0,
we obtain from (4)
A 1
6 —— — KAA=Wj R, teR, K=-W.
(6) 52 jy TeR, tew, .
Further we will consider (6) subject to the initial data
A
(7) Al,_y =0, oA =0, zeR
ot |,_p

2.2. Explicit formula for a solution of (6),(7)

Under assumptions of the section 2, the matrix K is a real symmetric
positive definite one. According to the matrix theory, K is congruent
to a diagonal matrix of its eigenvalues. This means that there exists
an orthogonal matrix T = (7};)3x3 such that

TIKT =A, T7'WT = puA,
where A = diag(a?,a3,a3), T ! = (1—;-;1)3><3 is the inverse matrix
to T
The solution of the problem (6), (7) we seek in the form
(8) A=T"1y,

where Y is an unknown function. Multiplying equations (6), (7) by T’
from the left hand side and then substituting (8) and j = ed(z)d(t)
into obtained equation we find

2

Y

() 8@? CAAY = TWed(2)s(t), z €W, 1>0,
Y

(10) Y (z,0) =0, 8—(:c,t) = 0.
ot t=0

The solution of (9), (10) is given by

(11) Y = (Yla}/éa)/?))*a

Yo = O rweyns— 2 m =123,

- 4ma?|x| am,
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where (TWe),, is m-th component of the vector TWe, x is the sign
of transposition, () is the Heaviside step function.
Using (8), (11) we find the following explicit formula for a solution

of (6), (7)
(12) A= (Ay, Az, A3),

0t) <~ 1, 1 EI
Aj =22 N TN TWe)—6(t— —), j=1,2,3.
J T mz_:l a%n Jm( We) |$| ( am) J 3

2.8. Ezplicit formula for a solution of (5)

The solution of (5) is given by the following convolution

+oo
(13) B(w,t) = K / O(t — 7)Vadivy A(z, 7)dr.
Using (11), (8) the formula (13) may be written as
(14) Q= (@17@27453)7
0(t) 5.1
— -1
5,05 S Lk,
i=1 j=1m=1m
1

0 yi ‘.%" 0 .Z‘j l‘j.%i
X{axi<yax\3>9<t i) " am [axi (IxP o[
DI Y N  P ) GRIP Y
a ap,|z[? Qm

where K,,;,n,i =1,2,3 are elements of K.

2.4. Explicit formula for a solution of (1), (2) for j = ed(x)d(t)

Using (3), (12), (14) we find a solution of (1), (2) in the form

1 0A
(15) H = ;curle, E = ~5 + P,
where
0A;  0(t) <~ 1 .,
(16) e A > 5 Ljm (TWe)m
v m=1 T
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3
(17) % = &;) > ainl(TWe)mia’ <t — M) ,

j=1,2,3; & is defined by (14).

2.5. Explicit formulas for a solution of (1), (2) forj = ed(x)f(t).

Let j = ed(z)f(t), f(t) € CY(t >0), [f(t)|,co = 0. Then a solu-
tion of (1), (2) is given by the formula (15) in which

04, 0t <~ 1., z;
1 J — 7 — T T
(18) Ox; T mzla?n jm We)m|x’2
1 |z| 1 |z|
X{am [f]—o 0 ( am)—i—mf(t -
+—9<t |—>f’<t—|x’>}, ij=1,2,3;
A, m Am
04;  0(t) <~ 1 .., 1
1 —L =N TN (TWe)y—
(19) ot 0y mz:la?n jm(TWe) ||

0, 3. 3.3, 1 »
(20) Py ==~ Z Z > — Kni T (TWe)

(o @)l 2) [ o
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2.6. Explicit formulas of electromagnetic field for isotropic medium

Let j=ed(x)0(t), e=el,p=pl,o=0.
Then a solution of (1), (2) may be presented in the form

) Bl = o (Do) L-ef o (1= 1)
0 o () )
i (2o(-2)

(22) H(z, 1) = ~curl, [’3‘5 (t - —)] .

47

3. Visualization

The tools that we use for a simulation of electromagnetic waves are
described in this section. Images of electromagnetic fields visualiza-
tion are given as a result.

There are two types of images on the figures. The first type is
related to three dimensional pictures of wave shapes. Wave shapes
viewed over a rectangular region for fixed time and one fixed space
variable x3. The second type deals with isolines of wave shapes within
two space variables for fixed time. The density of the color of the picks
in the z-axis realizes the magnitude of wave fields. Precisely the dark
(blue) is related to negative and light(red) corresponds to positive
values.

3.1. 3-D Graphs

According to the formulas above, we generate the graphs of several
components of £ and H components. The z axis represents one of
FE, H components, other axes represents x1 and xy variables, respec-
tively. We fixed x3 = 1 and z axis has the logarithmic 10 scale. The
parameters of media in considered examples are the following. The
matrix € for the anisotropic medium is given by

0.6873 0.1556  0.8560
0.3461 0.1911 0.4902
0.1660 0.4225 0.8159
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and € = 1 for the isotropic medium. For all examples p = 2.

The figures (1a), (1b), (3a), (2b) are related to the source j =

ed(x)d(t), and (3a), (3b), (4) are connected to j = ed(z)f(t), f(t)
O(t)sinwt, e=(1,1,1).

g8 .

Fig. 1. Anisotropic medium; Component E3.

Three dimensional simulation of Es3 is represented on Fig.(1a).
In Fig.(1b) we plot the value of E3 as rectangular array of cells with

colors on a surface. In both pictures we can see three distinctive wave
fronts propagating through the point source.
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Fig. 2. Isotropic medium; Component E3.
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In Fig.2 there is only one wave front observed as it is expected in
isotropic media. The simulation of the first component of the electric
field in the anisotropic medium by the source j = 6(t)ed(z) sin wt for
w = 0.05 and w = 10 is presented on Fig.(3a) and Fig.(3b).

(a) w=0.05 (b) w=10

Fig. 3. Anisotropic medium; Component E1; f(t) = 6(¢) sinwt
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Fig. 4. Anisotropic medium; Component Hi; f(t) = 6(¢)sin 10t

The figure 4 is related to the first component of the magnetic field
in anisotropic medium with the source j = 0(t)ed(x) sin 10¢.
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3.2. Fast running animations

Generating animation of the propagation is time consuming opera-
tion. First of all in a limited time range we simulate the propagation
for a specific time value. At the end we collect this frames and show
them continuously. To overcome time constraint we use special tools
to make operations faster. By means of MatLAB we wrote readable
code which is easy for modifications. Again with MatLAB we trans-
late this code in to fast running programming language C++. At the
end we use Intel’s processor specific C++ compiler to generate binary
code for the animations.

4. Conclusions

Electromagnetic fields arising from the point sources were simulated
by explicit formulas for generalized solutions of the Cauchy problem
for Maxwell’s system for the following case of the anisotropy. The
electric permeability is given by a symmetric positive definite ma-
trix, magnetic permeability is a positive constant, the conductivity
vanished.

We note that the simulation of electromagnetic fields based on
explicit formulas is the best one. But it is impossible to find explicit
formulas for solutions in general case. For this we need to construct
approximate solutions by numerical procedures and methods, and
then simulate electromagnetic fields of these solutions.

The results of our paper may be used to test simulation of elec-
tromagnetic waves in this general situation.
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