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Summary. In the paper we consider a class of matrix quasi-elliptic
operators in R™. We establish isomorphic properties of these opera-
tors in special weighted Sobolev spaces WAU(R”). From our results a
theorem on isomorphism for the Navier—Stokes operator follows.
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1. Introduction

The paper is devoted to the study of a class of matrix quasi-elliptic
operators:

()

in the whole space R". In particular, the class includes the Navier—
Stokes operator

—A 0 0 Dy
| 0o —a 0 D, X
(1.2) wpe)=| g g _aps | wER

Dy, Dy, Dy, O
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Our aim is to prove a theorem on isomorphic properties of the ope-
rators (1.1).

To prove theorems on isomorphic properties of differential opera-
tors, as a rule, it is necessary to use special weighted Sobolev spaces.
In the paper we use the class of special weighted Sobolev spaces
W, ,(R™) which was defined by the author in [1].

In the paper we continue the investigations [2—4].

2. Statement of the main result

Consider the matrix operator (1.1). We will suppose that the v x v-
operator L£(D,) satisfies the following conditions.

Condition 1. The operators K(D,), L(D,) and M(D,) are u X
wy p X (v —p) and (v — p) x p matrix differential operators in z
respectively.

Condition 2. There exists a vector a = (a,...,a,), 1/(20;) € N,
such that for any ¢ > 0 the equalities hold

K(c*i¢) = cK(i€), L(c™ig) = c? L(i€), M(c™i§) = c!/* M (ig),

i. e. the symbols of the matrix operators K(D,), L(D,) and M(D,)
are homogeneous with respect to the vector a.
Condition 3. The equality

det K(i€) =0, &€ R",

holds if and only if £ = 0.
Condition 4. The inequality holds

det(M (i) K ' (i) L(i€)) #0, &€ R".

Remark 1. From conditions 2 and 3 it follows that the operator K (D)
is a quasi-elliptic operator (see, for example, [5]).

As an example we consider the Navier—Stokes operator (1.2). Note,
that this operator is by Douglis—Nirenberg elliptic operator. For it we,
obviously, have v =4, u = 3,

~A 0 0 Dy,
K(Dm):< 0 —-A 0 ), L(DI):(Dm),
0 0 —A D,,
M(DI) = (Dl‘la DIQ? DI3)7
det(M(i€) K~ (i€)L(i€)) = ~1, a=(1/2,1/2,1/2).

Hence, Conditions 1-4 for the Navier—Stokes operator are satisfied.
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Using our results [1-4], we can establish analogous assertions for
the operator (1.1) in special weighted Sobolev spaces Wlf’(,(R").
By definition [1], the norm in the weighted Sobolev spaces

Wl (RY, 1=(,...,l), LEN, 1<p<oo, o3>0,
is defined by

(2.1) 1U(2), W0 (R™)]

= > @+ @)U DIU(x), Ly, (R,
0<B/I<1

where

n

<x>2:zx?lia ﬁ:(ﬁla"'aﬁn)a ﬁ/l:Z/Bz/lz
=1

i=1
Remark 2. In particular, W1§70(R”) is the Sobolev space Wé(R").

Remark 3. Consider the isotropic case [y = ... =1, = [ with 0 = 1.
Obviously, the norm (2.1) is equivalent to

(2.2) > I+l PIDLU (), Ly(RM)I.
0<|8/<t

If p > n, spaces with the norm (2.2) were introduced by L. D. Kudry-
avtsev [6] (see also the survey [7]). For every p > 1 these spaces
were considered by L. Nirenberg, H. F. Walker, M. Cantor (see, for
example, [8, 9]).

By I/;/L(,(R”) we denote the completion C§°(R™) with respect to
the norm (2.1).

From the definitions it follows that the space I/f/iw(R") is embed-

ded in the space Wlﬁ,g(R"). One can show that, for sufficiently large
o, the strict embedding holds

W ,(R") C W. ,(R™).
As was proven in [1] the equality holds
Wia(R") = W, 0(R")

for 0 < 1. Henceforth we consider these spaces for o = 1.
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Theorem. Let
L= (L, .y lp) = (Var,...,1/ay), 1/2 = (11/2,...,1n/2).

n
Suppose that Y c;/p > 1. Then the operator (1.1)
T

1
L(Dg): [[W) R"XH Z/ZR” —>HL R"XH ”2
1 w1 pu+1

18 an isomorphism.

Corollary. For 1 < p < 3/2 the Navier-Stokes operator (1.2)
3

H (R x Wy (RY) = [[ Lp(R?) x W, (R?)
1

18 an isomorphism.

Remark j. Some results on isomorphic properties of differential oper-
ators with homogeneous symbols in R™ are contained in [2-4, 10-14].

3. The scheme of the proof of the main result

In this section we present the scheme of the proof of the isomorphic
properties of the operator (1.1).
In the beginning we show that the operator £(D;) takes the space

H (B ] W,/ (R
1 pn+1

into the space

7
12, (R™) x H WP (R™).
1 pn+1

By the definition (1.1), for every vector-function

u(z) = (ut(z), u (= H anXH l/2
]

we have f(z) = L(D,)u(z), where f(z) = (fT(z), f~(z)):
fH(@) = K(Dg)u"(2) + L(Do)u™ (), [~ (2) = M(Dg)u™ (2).



On properties of a class of matrix differential operators in R™ 27

1
Since u™ (z) € [[W},(R") and u™(z) € H 1/2( R™), then, by Con-
1 u+1
1
dition 2, f(z) € [I L,(R"). By analogy we have
1
(14 (z))~ /28D DB M(D ) € H Ly(R,), 0<pB/1<1/2,
pt1
which is equivalent to the fact that
(14 (z)"/2)=(=28/D DB pr(D ) € H Ly(Ry), 0<28/1<1.
pt1

Taking into account the estimate

n 1/2 1/2
c1 <in’> < (z) 1/2<c (Zw > , 0<c <o,
i=1

by the definition of the space W, /2( R™), 1/2 = (I1/2,...,1,/2), we
obtain

[ (@) = M(Dy)u™(z) € [] WY/L(RY).
pt1

Consequently, the range of the operator £(D,,) lies in the space

I
HL,, R") x H Z/Z
1

ptl

Therefore, to prove the theorem, it suffices to demonstrate that the
system of differential equations in R™:

K(Dg)u™ + L(Dy)u™ = f* (),
(3.1)

has a unique solution

I

(3.2) ut(z) € [[W),(B"), u~ H WlAR™),

1 p+1

for every right-hand side

(3.3) fH(z) e f[ Ly(R"), H w2 (R,
1
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and the estimate holds

o v
(3.4) Yol (@), Wy (RN + - luy (2), WL (R
j=1 i=pt1

i=p+1

o v
<c (Z £} (@), LB+ > 7 (=), W;f,/f(R”)H)
j=1

with a constant ¢ > 0 independent of f*(z), f ().
In the next section we present the basic points of the proof of
solvability of the system (3.1).

4. The proof of solvability of the system (3.1)

By analogy with [2-4], we present the scheme of the proof of solva-
bility of (3.1).

First, we construct a sequence of approximate solutions to (3.1) by
using the Uspenskii integral representation for summable functions
(see [15, Chapter 1]):

(4.1) plx) = lim (2m) " h/_lvom
h
< [ [ exn (I226) Gle)oty) dcaya,

R™ R"

n
where |a| =Y «; and
T

(42) G() = 2m(E)™ exp(—(?™), (€7 =3 /™, meN.
=1

For this we consider the following system with a parameter £ € R™:

K(ie)v" + L(i€)v™ = fH(e), M(@gvt = f(€).

Note, the system is obtained by formal application of the Fourier op-
erator to (3.1). Taking into account Conditions 1-4, for £ € R™\{0},
we obviously obtain

(4.3) v (&) = K~'(i€)(I — L(i€)Ny (&) M (i€) K~ (i€)) f+ (€)
+K (i) L(i&) Ny (&) f(€),
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(44) v (&) = Ny (MK (i) fH(€) — Ny (O F (),

where
No(€) = M (i€) K" (i€) L(i€).

By analogy with [15, Chapter 3], we construct the vector-functions

k
(4.5) uf (z) = (2m)~"/2 / v / STEG (Ev®) o (£) de do,
Tk

1 Rn

k
(4.6) up (x) = (2m) /2 / v / FTEG (E0® v (€) dE do.
1k Rn
From definitions v (£), v~ (£) it follows that
K(Dy)u (z) + L(Dy)uy (z) = fif (z),

M(Dz)uy (z) = f; (@),

where
F(o) = (2 /k oo [ [exp (i20) G0 £* ) de dy v,
1/k R™ R®
fr (2) = (27r)n/kvo‘|1//exp <va—ay£> G(&)f (y) d¢ dy dv.
1/k R™ R™

By the integral representation (4.1), we have
1£ (@) = fF(2), Lp(Ra)ll =0, &k — oo,

11+ (2)'/2)"C=2/(DE £, () — DI~ (%)), Ly(Ra)ll = 0,
0<28/l<1, k- oo.

Consequently, we can consider the vector-functions (4.5), (4.6) as an
approximate solution to (3.1).

Suppose that the vector-functions f*(x), f~(z) are compactly-
supported. By (4.1), (4.2), one can indicate a natural number m such
that the vector-functions uj (z), uy (z) are infinitely differentiable
and summable with an arbitrary power p > 1 (see, for example, [4]).

Rewrite (4.5), (4.6) in operator form

(wy (2), wy (2)) = Pef(2),  flz) = (f*(2), f~(2)).
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By analogy with [2-4], in the case of |a|/p > 1 one can prove the
estimate

I

@7 Y (@), W (R + 2 lup (), W,/ (R™)|
j=1 i=p+1
"
¢ (Z Iff (@), Lp(R™)|| + Z I1£;( Z/Z(R”)H>
j=1 i=p+1

with a constant ¢ > 0 independent of f*(x), f (z), k, and also
establish the convergence

o
(4.8) Yo llug, (@) = uf, (), Wy, (RY)]|
=1

v
_ . 1/2
T 2 gy (@) =g, 4(2), WERM] =0,k ke = oo
i=p+1
I v
Since the space [] Wé,l(R”) x 1 Wé/f(R”) is complete, then one can
1 1 ’
construct a continuous linear operator
I
P: J[ Ly(R") x HW”2 RY) — HWl (R™) x HW”2 R"),
1 pt1 pt1

that is defined on compactly-supported vector-functions by the for-
mula:

PI() = lim Pef(a), f(r) = (7 (), f(2).
— 00
Obviously, the vector-function
u(z) = (u*(z), u (z)) = Pf(z)
is a solution to (3.1). By denseness of the set compactly-supported
I v
vector-functions in [T L, (R™)x [] WZ/ 12 (R™) (see [1]) and the theorem
1 1 ’
on extension by continuity, we can extend the operator P to the whole
o v
space [] L,(R™) x ] W;/ 12 (R™) with the same norm. We will use the
1 p+1 ’

same notation P for the extended operator.
From (4.7) it follows that the linear operators

H (R™) XHWZ/ZR” H ! (R") XHWZ/ZR”
1 pt1 pt1
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are continuous and the sequence {||P|/} is bounded, i. e. | Px| < c.
Consequently, by the Banach—Steinhaus theorem the convergence

Ppf(z) = Pf(z), k— oo,

is true for every vector-function f(z):

7)€ [ Lo(BY), e [[w'2r
1

1
The above implies existence of a solution u(x) :

u+(x)EﬁW (R™), u™ H l/2

1 u+1

to the system (3.1) for every right-hand side f(z) :

F*(2) € [ Lo(BY), e [[w'2(r
1

pt1

and the solution satisfies the estimate (3.4).

By analogy with [2, 10], one can prove uniqueness of a solution
(3.2).

Consequently, the linear operator

H 1R"><1—[ Z/Z H R”XH Z/Z

pt1 pt1

is continuous, its range coincides with the whole space

7
HL,, R") x H Z/Z
1

ptl

the kernel is zero, and the operator P is its inverse. Hence, the ope-
rator £(D) is an isomorphism.

Thus, to complete the proof of the theorem it is necessary to
obtain the estimate (4.7) and establish the convergence (4.8). In the
next section we discuss the questions.
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5. The estimates of approximate solutions

By analogy with [2-4], we present the scheme of the proof of the
estimate (4.7) for approximate solutions.
Rewrite the vector-functions (4.5) and (4.6) as follows

uf (z) = uf”" (@) +ul" (x)

1 Rn

k
= @m 2 [0 [ G ) 0t ) + () de o,
/k
up () = up, " (2) +up” (2)

k
= @0 [t [ et en) o) + v () de do,
7k

1 R”

where
vt (€) = K1 (6€) (T — L(i€) Ny (€)M (i) K 1 (i€)) f(€),
vt (€) = K~ (i) L(i€) Ny () F (),
vH(€) = Ny (M (i€) K~ (i) f(€),

vTT(E) = =Ny HOFT(€),  No(€) = M(i€) K~ (i¢) L(i€).

We divide into the proof of the estimate (4.7) and the convergence
(4.8) on four lemmas.
First, we present estimates for the higher order derivatives of

Lemma 1. Let § = (B1,...,0n), Ba = 1. Then the estimates are
true

I
Z Jug( R“|<c2||f+ Ly(R™)],

j=1
ZHD’BUM ) Lp(R*)| < c Z Y IDYf; (), Ly(RM)],
i=p+1ya=1/2

with some constant ¢ > 0 independent of f*(x), f~(x) and k; more-
over

Z IDSuf (z) = Djuy, (x), Ly(R™M)| =0, ki, ky — oo,
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Lemma 2. Let f = (f1,...,0n), Ba=1/2. Then the estimates hold

Z 1Dy ;" (), Lp(R™)| < CZ 15 (@), Lp(B)I,

t=p+1

Y- IDJugy (@), LR < e Y > IDLfi (2), Lp(RY)l,

i=p+1 1=p+1 ya=1/2

with some constant ¢ > 0 independent of f*(x), f~(x) and k; more-
over

Z IDSuy, ;(x) — Dy (z), Ly(R™)|| =0, ki, ky — 0.
i=p+1

Now we present estimates for the other derivatives of the vector-
functions u; (), uy ().

Lemma 3. Let 5 = (B1,...,06n), Ba < 1 and |a|/p > 1. Then the
estimates are true

7 J
> @) I DRu s (@), Ly(RM < e D7 N1 (@), Ly(R)]

Zu IR @), (B < e 3 I (@), W R,

i=p+1

with some constant ¢ > 0 independent of f¥(x), f~(x) and k; more-
over

o
]Zzil (1 + (z))~ (B (DEust. («) — DEug, ;(2)), Ly(R™)|| — 0,

k‘l,kQ — 00.

Lemma 4. Let 8 = (f1,...,0n), Ba < 1/2 and |a|/p > 1. Then the
estimates hold

w

2 () ~(/2=69) Dl ¥ (), Ly(RY)| < e 3 I1F7 (@), Lp(R™)],
i=p+1 j=1

Z l{z)=1/2=B) DB, (x), Ly(R™)| < ¢ Z If: (x), W2 (R™)I,

i=p+1 i=p+1
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with some constant ¢ > 0 independent of f*(z), f (x) and k; more-
over

S 1101+ @)~ (D, (x) = Dy, (), Ly(R™)|| =0,
i=p+1

kl,kQ — OQ0.

Repeating similar arguments of the proofs of Lemmas 3.1-3.5 in
[4], we can prove the above lemmas.

Lemmas immediately yield estimate (4.7) and convergence (4.8)
for approximate solutions (4.5), (4.6) to the system (3.1) which were
used in Section 4 in the proof of the theorem.

6. Appendix

It is interesting to compare isomorphic properties of the Navier—
Stokes operator (1.2) and isomorphic properties of the operator

1 0 0 Dy
0 1 0 D,
0D =1 4 o 1 Dzj, , T€R.

Dy Dy, Dyy O

From [4] it follows that the operator

H (R x W2 (RY) — ﬁwp{l(m) x Ly(R?)
1

is an isomorphism for 1 < p < 3/2. Hence, for every vector-functions
3
(u*(2), u™(2)) € [ Wy (R?) x Wy (R?)
1

the estimate is true

ut(x 3 ut (z 3
o1 (I @) (B + 19 ), Ly(R)|

1 _
+ ||WU (z), Ly(R*)|
# u (x 3 6u7 x 3
+ ||(1 n |$|)V (z), Lp(R”)|| + ;'Z:QHDI (z), Lp(R )||)

< (" (@) + Vu~(2)), Ly(R)[| + [dive® (), Ly(R%)]|
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(II e ut(2), Ly(R)|| + IVu™(2), Ly(R)]

1 _
+ HWU (), Lp(R3)||
71 u (T 3 Bu(z 3
+ ||(1+|$|)V (), Lp(R )H+62|::2||Dz (), Lp(R )II)

with constants c¢;, ¢z > 0 independent of u™(z), u™(z).
Note that, by the corollary from the theorem, for every vector-
functions

3

(ut(z), u™(x)) € HW;I(R?’) X Wplyl(R?’), 1<p<3/2,
1

the following estimate holds

1
c1 <||WU+($)7 Ly(R%)||

L e 5t (o), (B
Iy Bl + 3 |00 (e, £y
e @, L)+ [Va™ (o), (R

A" o

< I(=Au*(2) + Vu~(2)), Lp(R)| + [ldiveu™ (), Ly(R)]

< (I @) LR

b gt 3 Byt (z 3
Iy Ve Bl + 3 100 (e, £y
g @) LR + 196~ (@), ()]

A+fap” b

with constants ci, ¢y > 0 independent of u™(z), u™ ().
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