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Summary. In the present paper we extend the definition of a hi-
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best approximation. The construction of some hierarchical basis is

finally described.

Key words: hierarchical bases, reflexive Banach spaces, best ap-
proximation, reproducing mappings, extremal functions of cubature
formulas, splines of affine varieties

Mathematics Subject Classification (1991): 41A55, 46N05, 65D32

1. Introduction

Solutions to most types of problems in applied mathematics are mem-
bers of a given Banach space and we find it convenient to look for
the solution to a problem of such kind in the form of a convergent
series with respect to a given basis of the initial Banach space. In par-
ticular, in the space C0, 1] of continuous functions with domain [0, 1]
the well-known Faber — Schauder sequence constitutes a basis (see,
e.g., [9, p. 227]) and for each function from C0, 1] the corresponding
series is convergent in the norm of C[0, 1]. It was shown in [4] and [5]
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that representation of functions in the form of the Faber — Schauder
series for problems like interpolation and numerical quadrature has
a long tradition. For partial differential equations a similar approach
was studied in [1], [4], [5], and [17].

It seems to be several properties of the Faber — Schauder basis
which are of crucial importance for problems in the theory of approx-
imation and numerical analysis. In particular, for a given continuous
function every coeflicient of the corresponding series with respect to
the Faber — Schauder system is completely determined by the values
of the initial function in the finite subset of its domain. But we can
not use the Faber — Schauder system as a basis in case when the
functions of a given Banach space has derivatives of order greater
than 1. In this event it is natural to ask

Does there exist a basis like the Faber — Schauder system for a given
Banach space with functional members of high order of smoothness?

Throughout the sequel we call bases like the Faber — Schauder system
the hierarchical bases.

In general the hierarchical basis can inherit the properties of the
Faber — Schauder system only in part. An example is as follows.

Let £2 C R™ be a bounded domain and let B be a Banach space
of harmonic functions with domain £2. If u is a member of some basis
of B then the support of u can not be in the interior of 2. For,
were it otherwise, we would find that u is identically equal to 0; a
contradiction.

Nevertheless, we can define a hierarchical basis in a separable Ba-
nach space of rather general type and the hierarchical basis defined
in such a way inherits some important properties of the Faber —
Schauder system. The goal of the present paper is to describe the
construction of some hierarchical basis in a separable reflexive Banach
space. By this way we also establish the existence of a hierarchical
basis in the space under consideration.

Let £2 C R™ be a bounded domain with sufficiently smooth bound-
ary and let the origin be in the interior of 2.

The setting is a separable reflexive Banach space X = X (£2) and a
reflexive Banach space Y = X™, dual to X. The members of X are real
valued continuous functions with domain 2. Let X be embedded in
the Banach space C(£2) of functions which are continuous in {2 and
let the embedding be linear and bounded. Hence the conventional
Dirac delta function é(z) is a member of Y.

We also assume that for a given finite subset F of {2 there exists
a member u(z) of X such that the values of u(z) at points of F
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are prescribed real numbers. It will be true if, for example, every
polynomial belongs to X.
Furthermore, let X be a strictly normed linear space, i.e.,

[l 4o | X = [lu | X[+ [lo | X]

implies that v = tv for some ¢ > 0 or else v = 0. This constraint on
the norm is easily seen to be equivalent to the geometric condition
that the unit ball of X be rotund. Since X is strictly normed it follows
that Y = X ™ is a smoothly normed reflexive Banach space [8, p.173].
Let N*(-) = ||- | Y||- By a definition, Y is smoothly normed exactly
when

(NG (1), m) = lim ~(N“(1 + tm) — N*(1))

exists for all m,l € Y, ||| Y|| = 1, and defines a functional N;'(]) in
Y* = X. The functional N5'(l) is a Gateaux differential of the norm

N*(-) at L.

Let Y be also a strictly normed linear space. Then there exists
a Gateaux differential of the norm N(-) = ||- | X|| at all unit vectors
ue X.

Examples of strictly and smoothly normed spaces are Hilbert
spaces and the Sobolev spaces ngm)(ﬁ); 1 < p < 0. By a definition,

¢(z) with domain {2 belongs to ngm)(ﬁ) iff ¢ have all derivatives up
to order m locally integrable and

m!
e W@ = [{lel+ 35 oD de < oo,
£

|a|=m

The integral here spreads over {2, and summation is taken over some

multi-indices a = (a1, @, . . ., @,) with integer coeflicients,
n m
al=oqlas!. .,y ol = E aj, DO‘(,o:(9 a183a2€0 Jair
= 10z ... Ozn

For mp > n ngm)(ﬁ) is embedded in C'(2); and the embedding is
linear and bounded.

Let A = {A;}2, be a sequence of finite subsets of £2; Ay =
#015=12...,00} 4, = 4, u{e" | j=1,2,..., 0k},
f:;k) ¢ Ap_1, k = 1,2,.... We assume that the union of all Ay is
dense in §2. The sequence A = { A} is said to be a multigrid in
£2; Ay, is a k—level of A; and vectors a":;k) € 12 are nodes of A.
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(%)

Given a multigrid A, we introduce the sequence Nod,™ of subsets

of A by putting Nod(lo) =0 and for k =0,1,2,...

Nod‘gk) = Nod‘gk_)l U {é‘gk_)l}, ] — 2, 3, ,U(k)’

If k< kyor (k=k; and j < j;1), then

Ap—1 € Nod(®) ¢ Nod™) ¢ 4, .

Let H = {h;k) €EX|k>0,j=1,...,0(k)} be acountable subset
of X.

Definition 1. We call H a A-hierarchical system in X iff for oll k,
j, and J":l(m) € Ayg, f:l(m) fzgk), the function h;k) equals 0 at f:l(m);

and the value of h;k) at ";k) equals 1.

Hence, H is a A-hierarchical system in X iff the following equal-
ities hold

1y AP@EM™y=dsr; m=0,1,..k 1=1,2,...,0(k).

Here 5; is the conventional Kronecker delta.

Given the finite subset Ay of 2 and an integer j,7 =1, 2,...,0(k),
we can apply the Lagrange interpolation formula over the set Ay of

nodes and find h;k) € X such that (1.1) holds. Hence the set of
A-hierarchical systems of X is not empty. Obviously, every finite
subsequence of a A-hierarchical system H is linearly independent.

In [12] and [2] it was shown that hierarchical systems in spaces like
Sobolev spaces may be constructed as sequences of interpolating D™—
splines. The properties of A-hierarchical systems in Hilbert spaces
were studied in [3]. Cubature formulas based on hierarchical systems
were constructed in [15] and [16].

Definition 2. If a A-hierarchical system H in X is a basis of X,
then H 1is called a hierarchical basis.

An example of a hierarchical basis for the space C[0,1] and the
Sobolev space W;[0,1] simultaneously is the well-known Faber —
Schauder system.

We find it convenient to formulate a general problem as follows.
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Problem 1. Given a separable Banach space X, find a A-hierarchi-
cal basis of X.

Alongside Problem 1, it stands to reason to consider another prob-
lem that is posed in the theory of approximation. To be more pre-
cise, we bear in mind the problem of best approximation in a Banach
space. Before stating the problem, we introduce a few designations.

Since Nodgk) C 12 it follows that for all J":Em) € Nodgk) the func-
(m)

tional é6(z — &, ') is a member of Y. Evidently the linear span

(k) _ =(m)y | =(m) (k)
L;” =span{é(z — ;") | &~ € Nod;"}
is a finite dimensional closed subspace of Y.

(0)

Problem 2. Given an arbitrary nonzero functional ;7 € Y, find

(%)

an element of best approzimation to lgo) from L;

As is known, every closed convex subset of a reflexive strictly
normed Banach space is a Chebyshev set (see, e.g.,[10, p.104]). It
means that every element of the Banach space has exactly one ele-
ment of best approximation from the set under consideration. Con-
sequently, there exists a unique solution to Problem 2.

The theme of our presentation up to this point may be described
as a study of the interplay between the solutions of Problems 1 and 2.

To begin with, we take lgo) ey, lgo) # 0. For example, lgo) may
be the indicator xpo(z) of £2. To lgo) and every vector {cgm) | J":Em) €
Nodgk)} of real numbers, we assign the associated sequence of error
functionals by putting

5™ eNoalt
We call the sequence {l;k)} the error multifunctional. The correspond-
ing sequence of cubature formulas is said to be a multicubature for-
mula.

Let Yj(k) be a flat parallel to Lgk); Yj(
an affine variety and

D=1 4 LY. Then vV is

dimY" = N = N(k,j) = 0(0) + c(1) + -+ o(k 1) +j - 1.

If k < ky or (k= ky and j < j1), then ¥ c V"),

1
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For given integers k and j, we use the symbol stk (2) to designate

7,0pt
the element of best approximation to lg ) (k)

from L,
the expansion of 5]( 0)pt
(m)

we denote by ¢; /. = ¢; Or),t(], k), ie.,

, and coeflicients of

~(m))

() with respect to delta functions é(z — &,

k-1 o(m) j-1
k m ~(m k ~(k
Bope(®) = clopd(e = 8") + 3 clod(e — 2Y).
m=0 =1 =1
Let l; O)pt = l( ) 5;i)pt. The corresponding cubature formula is said to

be X-optimal on the set Nodgk) of nodes [14]. The norm ngi))pt | Y]]

equals E(lgo),Lgk)), where E(w, N) is the distance from w € Y to
a linear subspace N of Y.
Let I € Y and u € X. If the following equalities hold

(1.2) 1Y) = (b w) = flu| X%,

then wu is said to be an extremal function forl [14] and [ is said to be
a generated extremal function for u.

By the reflexivity of X and James Theorem (see, e.g., [11, p. 236]),
there exists an extremal function for an arbitrary [ € Y. Since X is
a strictly normed space it follows that for a given functional [ € Y
an extremal function u € X is unique. By the same reasons, for
a given function u € X there exists a unique generated extremal
function. Throughout the sequel we denote the extremal function for

i) (k)

7,0pt by u] opt*
In Section 5 we discuss how to transform the set

{ugi)pt(m)’ uglfl-)l,opt(m)’ o "uff]z;“)v(’pt(w)}

into the function h;k)(:zz) of some A-hierarchical basis of X; and it is
the main result of the paper.

2. Extremal Functions and Reproducing Mappings

Let lg ) ¢ Y, l 7E 0, and let u(l ) be the extremal function for lgo).
Then

(2.1) 1171 7 )? = (17wl = [l | X2,
(0)

As our next step, we consider the properties of u; ’.
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Theorem 1. There is a unique element v = u(z) of best approrima-
tion to zero element of X from

V={veX | )= ">}

The function u is a unique extremal function for lgo) m X. If M is

the kernel of lgo) and E(w, N) is the distance from w € X to a linear
subspace N of X, then

E(u, M) = E(0,V) = |lIl” | Y|l = ||« | X]I.

Proof. Let v. € X, (lgo),v*) =d #0, and a = ngo)H"’/d. Then
vg = av, € V. Consequently, V = vg+ M # 0, and V is a closed
convex subset of X. Whence and from the reflexivity of X, we infer
that V is a Chebyshev subset of X, and there exists a unique element
u = u(z) of best approximation to zero element of X from V. By the
definition,

[ull = min{|[o|| | v € V'} = min{|lu - o|| | v € M},

and zero element of X is an element of best approximation to u from
M. Whence and from the well-known theorem of characterization of
elements of best approximation [13, p.2] it follows that there exists
fo € Y such that

(2:2) 1foll =15 Nlull = (fo,u);  (fo,0) =0 Vv e M.

If v, € X and (lgo),v*) = d # 0, then for Vw € X we have w = av,+v,
where a = (lgo),w)/d and v € M. By the third equality of (2.2),
(fo,w) = a(fo,us) = ﬁ(lgo),w), where 8 = (fo,u.)/d. Therefore,
fo= ﬁlgo) and (fo,u) = ﬁ(lgo), u) = ﬁngo)Hz. By the second equality
of (2.2), B = HuH/ngO)]P Considering this, we derive 8 > 0, and, by
the first equality of (2.2), 8 = 1/HZ§O)H. Hence |ju|| = ngO)H, and we
arrive at the sought relations (2.1) for the function ulo = u.

From the strict convexity of X it is immediate that there is aunique
extremal function for lgo) in X . For, were it otherwise, we would find
at least two extremal functions u; and wus with the same norm and
their half-sum w;2 = (u1 + u2)/2 would then have the norm less than
each of them. In this event,

(0)
0y > o) o),
[[u12]]

a contradiction. 0O
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Applying Theorem 1 to the space Y, we obtain

Theorem 2. There is a unique element |l of best approzimation to
zero element of Y from

Vi ={meY|(mu”) = [u\”)}.
(0)

The functional l is a unique generated extremal function for u;’ ' in
Y.IfM*"={meY | (m, u(lo)) = 0} and E(I, N*) is the distance
froml €Y to a linear subspace N* of Y, then

E@l,M*) = E@0,V") = [«{” | X|| = L] Y]

Let lgo) €y, u(lo) € X, u(lo) # 0, and (2.1) holds. Then we can

define the mapping = : ¥ — X by W(lgo)) = ugo). We also assume

that 7(0) = 0. By the definition, W(lgo)) is the extremal function for

lgo) € Y. By Theorem 1, it follows that 7 is a single-valued mapping
with domain Y and for [ € Y and a € R we have

lx@) | X|* = @ r@)= LI Y]*  7(al) = an(l).

Together with m, we consider a mapping 7* : X — Y, dual to =.
Let u(lo) € X, u(lo) # 0, lgo) € Y, and (2.1) holds. We assume that
W*(u(lo)) = lgo) and 7%(0) = 0. By Theorem 2, it follows that =™ is
a single-valued mapping with domain X and

l7*(w) | Y| = (7*(w),w) = [lu| X|°, 7"(ou) = an”(u), Yu € X.

Let I € Y and u € X. By Theorems 1 and 2 [ = 7n*(u) iff u = 7 (I).
In particular forl € Y and v € X

I=7"(r(l)) and wu=mn(7"(u)).

Hence 7 : ¥ — X and #* : X — Y are reciprocal and surjective
mappings. The image of the sphere of radius R under the mapping
m is the sphere of the same radius R. Conversely, the image of the
sphere of radius R under the mapping 7* is the sphere of the same
radius R.

If X is a Hilbert space, then # = n* and 7 is said to be reproducing
mapping of X [2, p.23]. We also find it convenient to use the term
“reproducing mapping” in the case of a Banach space. To be more
precise, we call 7 (resp. #*) the reproducing mapping of the Banach
space Y (resp. X). In [8, p.174] 7* is called the norm-duality map.

Because of developments in the abstract theory of convex pro-
gramming, it is possible to readily characterize the extremal function
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for an arbitrary functional lgo) ey, lgo) # 0. By hypothesis X is
a smoothly normed space. In this case let

(2.3) (N (v), ) = lim ~(N (v + tw) — N(v));

t—0 t

this is defined (by assumption) whenever v#0 and N (v) is a Gateaux
differential of the norm N(-) = ||- | X|| at v; N5(v) € Y. We have

Theorem 3. Let lgo) be a nonzero element of Y; M is the kernel of
lgo); u € X and (lgo),u) = MO)Hz. The function u is extremal for
lgo) iff (NG(u), w) =0 for Vw € M. Moreover, the extremal function
u € X for lgo) is the solution to the following problem

IO
Ng(u) = Hl(o)Hll )
1

(2.4)
(1) = 1)

Conversely, every solution u € X to (2.4) is the extremal function

for lgo). There is a unique solution to (2.4).

Proof. Let V. ={v e X | (lgo),v) = ngo)w} =v+ M and v € V. By

Theorem 1, u is the extremal function for lgo) iff
[[ul[ = ming|jo|[ | v € V}.

Consequently, u is an R-spline interpolant of V', with R the identity
map on X [6, p.576]. Whence and from Corollary 3.1 [6, p.584] it

follows that v € V is the extremal function for lgo) iff (NG(u),w) =0
for Vw € M.

Let u be the extremal function for lgo), u € X.If ¢ € X then
¢ = ou+ w, where w € M and a € R. Considering this, we derive

(Ng(u), ) = a(Ng(u), u) + (Ng(u), w).
Since (2.3) holds, we have (N/(u), u) (w4 tu]| — el = |||

=1i
t—0 ¢t
But (N5 (u),w) = 0for Vw € M, and we obtain a = (Ng(u), ) /|||

Inserting this equality in (lgo), p) = a(lgo), u) and considering that «

(0)

is the extremal function for I, /, we find that

©
ﬁ(z@, ¢) = (lyl\uf\z ) (NL(w), 0) = (N5(w), ).
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Hence, u is actually a solution to (2.4).
Assume now that u is a solution to (2.4). Then (Nj(u),w) =
1 (l(o)

Tenk ,w)=0for Vw € M.In this event, as we know, the function
1

(0)

u is extremal for 7] .

By Theorem 1 there is a unique extremal function for lgo) in X.
Hence, there is a unique solution of (2.4). O

By hypotheses of Theorem 3, the image of lgo) € Y under the

mapping 7 is the unique solution to (2.4).

Lemma 1. Let X be a Hilbert space with the inner product (-,-)x
and let lgo) be a nonzero member of Y. The extremal function u(lo) for

lgo) satisfies the following equalities
(2.5) (1% 0) = (" p)x, Vo€ X.

Thus, u(lo) is the member of X associated to the given functional by
virtue of the Riesz Theorem on the general form of a bounded linear
functional.

Proof. Let X be a Hilbert space. In this event the Gateaux differential
N (v) of the norm N(-) at u(lo) is defined by

1
(N ("), w) = H (O)H<u§0>,w>x, Yu € X.
Uy

Whence and from Theorem 3 it follows that (2.5) holds. O
The following theorem is dual to Theorem 3.
Theorem 4. Let u(lo) be a nonzero element of X ;
M ={meY | (m,u”) =0}
be the annihilator of {u(lo)} CX;leY, and (I, u(lo)) = Hu&O)H? Then
I s a generated extremal function for u(lo) iff (m, N(*;’/(l)) = 0 for

VYm € M*. Moreover, the generated extremal function l € Y for u(lo)
1s the solution to the following problem

NE'(0) = —grul®,
(2.6) g ||

(4, ul”) = 2.

Conversely, every solution | € Y to (2.6) is the generated extremal

(0)

unction for uy ’. There is a unique solution to (2.6).
1 q
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By hypotheses of Theorem 4, the image of u(lo) € Y under the
mapping 7* is the unique solution to (2.6).

Theorem 5. The reproducing mappings © and ©* are demicontinu-
ous and the following inequalities hold

(7" (u) — 7" (v),u—v) >0, Vu,veX,

(r(l) —mw(m),l—m) >0, VImeY,

i.e., ™ and ™ are monotone. If for each nonzerov € X (resp. l €Y)
the functional Nj(v) (resp. NZ'(1)) is the Frechet differential of the
norm at v (resp.l), then ©* (resp. w) is continuous.

Proof. To begin with, we consider the reproducing mapping 7*. Let
u € X,u#0; and | = 7*(u). By (2.4), the following equalities hold

=1l Ng(u) = [lul| No(u) = Ne([lu]lw)-

In terms of [8, p.174] m* is the norm-duality map from X into Y.
There are proofs of the monotonicity inequality for #* and the demi-
continuity of 7* in [8, p. 174].

Let for each nonzero v € X the functional N/ (v) be the Frechet
differential of ||- | X || at v. Under this hypothesis, there is a proof of
the continuity of #* in [7, p. 149].

By the same way, we establish the properties of #. O

If there is a Frechet differential of ||- | X|| at v € X, v # 0, and
a Frechet differential of ||- | V|| at [ € Y, I # 0, then it follows from
Theorem 5 that 7* and 7w are homeomorphisms of X and Y.

Since the affine variety Yj(k)
ed subset of Y it follows that the image X](.k) of Yj(k) under 7 is

an unbounded subset of X. If & < k; or (k = ky and j < j;), then

X](.k) C X](.lkl). Let ©#* be continuous. Since Yj(k) is a closed subset of
Y it follows that X](.k) is a closed subset of X.
(k) (k)
J

of error functionals is an unbound-

There is a one-to-one correspondence 7; of topological space X

onto RNGHK)  where N(j,k) = diij(k). The definition of T](k) is as
follows.
Let H be a hierarchical system in X, hgm) € H, f:l(.m) € Nodgk),

and u € X](.k). Then we assume that
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Let 7' ( ) = { | ™ ¢ Nod } e RNGX) | Examine that T](k) is
actually a one-to-one correspondence of X®) onto RNG#),

Let u; € X](k), Uy € X](.k), and T;k)(ul) = T;k)(ﬂg). Then I, =
™ (u1) € Yj(k), ly = m*(uq) € Yj(k), and for szgm) € Nodgk) we have
(l1—1s, hgm)) = 0. Considering that I; — s € Lgk), we arrive at [ = [.
Hence u; = w(ly) = w(l2) = us.

(%)

If #* is continuous then T, is also continuous. In this event X

is a topological variety of dimension N (j, k) = dim Yj(k) and X](.k) is
(k)

homeomorphic to the affine variety Y;

1) ¢y

J
is given by the formula ugk)(m) = u(lo)(a:) - D (m)Uél )( ),
5™ eNod!")

where Ué?)(m) is the extremal function for §(z — f:( ). If Us(2) i
—&;

In case of a Hilbert space the extremal function for [}

is the
extremal function for the Dirac delta function §(z) and Us(z (m )) €

X, then U{™(2) = Us(z — ™).

Lemma 2. The norm of the extremal function ul

(* )

Opt for the optimal

error functwnal l;

ofXj

ot 15 less than the norm of an arbitrary element

ugco)pt = arg min{||v | X|| | v € X](k)}.
(k)

There is a unique element of X;™ with this property.

Proof. LetuEX(k) u#ujk) Thenl—ﬂ'*( )EY()andl#l

opt
Hence fJu | X|| = ||| Y| > 1%, | Y| = l[ufop | X|I. D

Jj.opt”

J:opt J,0pt

Let us establish the additional properties of ug O)pt To this end, we
apply the following

Theorem 6. [10, p.116] Let Y, be a closed linear subspace of Y,
l(0 eY\Yy, and 50pt € Y1. The functional §,p; is the element of best

approzimation to l from Y1 iff there exists a member fo of Y™ such
that

1A 1Y =1 (1Y = 6o | Y1 = fo(?);  fo(6.) = 08, € V3.

Demonstrate that the following claim is true.
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Theorem 7. A functionu € X ](k) is extremal for optimal error func-

tional 1% iff

3,0pt
(2.7) u(@?) =0 vi® e Nod.

Proof. By the reflexivity of X, it follows that for Vf € Y™* there
is a function v € X such that f(I) = I(u) for VI € Y. Applying
Theorem 6 to the space Y and the subspace

Y1 = L;k) = span{d(z — fzim)) | J":Em) € Nodgk)}
and considering that the element of best approximation to lgo) from

L;k) is denoted by 5;i)pt, we conclude that there is a function ug € X
such that

(2.8) Jluoll = 1; 11 = 600 | VIl = (17, wo); (6, wo) = 0¥, LY
The third condition of (2.8) holds iff
(2.9) up(8?) =0 V&® € Nodl¥.

Considering this, we write the second condition of (2.8) in the equiv-
alent form

k k k
11 1y = 180 = ) vy = @ - 68 ).

J.opt?

If v(z) = ngi))pt | Y||-uo(2), then it follows from the last equality that

ngi))pt |Y|? = (l;i}pt, v) = ||v | X||®. Thus, v is the extremal function
for lgi))pt, and v = uj{co)pt. Whence and from (2.9) we infer that (2.7)
holds.

Assume now that u € X](.k), (2.7) holds, and cl(.m) = cl(.m)(u) are
local coordinates of u € X](.k), ie., cl(.m) = cl(.m)(u) are entries of the
vector T;k)(u) € RNGHK Let 6, = % cl(m)(S(J: — fzim)) Then

:i(m)ENod(k)

i J
0, € Lgk), and T](k) (W(lgo) —48)) = T](k) (u). Hence the function u =
W(lgo) — 4,) is extremal for lgo) — 4., and

(2.10) W0 =8 u) = 1Y =6, | V|2 = [lu] X2

The function wo(z) = ||U|1X|| - u(z) belongs to the unit sphere of X

and, by (2.7), satisfies (8., ug) = 0 for V4, € Lgk). Whence and from
(2.10) it follows that

1
l(o),u — 12— be,ug) = A be,u
(1 0) (1 0) H“|XH(1 )
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= Y = 8.1 Y|P = 11 = 6. | Y.
R IXH

Thus for given d, € L;k) there is a member 1y of X = Y™ such that
(2.8) holds. By Theorem 6, 4, is the element of best approximation

to lgo) from Lgk), and lg ) — &, = l; O)pt Consequently, u = W(l;i))pt) =
u(~k) a
J;0pt”

As is well known, for a given set of nodes there is a unique optimal
cubature formula in a Hilbert space and the corresponding optimal
extremal function equals 0 at all nodes of this formula. Moreover, in
case of Hilbert spaces like Sobolev spaces, the system (2.7) is a start-
ing point of the algorithm of constructing the (unknown) weights of
an optimal cubature formula (see, e.g., [14, Chapter 9]).

Let

— e X | (1, 0) =0, (§(z — &™), v) = 0V&™ € Nod®}

be a closed linear subspace of X and let V( ) — go)pt + M( ) be the
flat parallel to M]( ).

Theorem 8. Let the norm N(-) = ||- | X|| be a twice continuous
(Frechet) differentiable functional on X \ {0} and let d*N(-) be the

second Frechet differential of this norm. The norm of the extremal

(%) (* )

J;0pt
norm of an arbitrary element of V]

Junction u; o, for the optimal error functional I

)}

- 1s less than the

(2.11) ul?) (2) = argmin{|jv | X|| | v € VV}.

J,0pt

There is a unique element of Vj(k) with this property.

Proof. Let v € Vj(k), v # ugi))pt, and 0 < ¢t < 1. The function ¢(t) =

I[(1 - t)ugco)pt + tv | X|| is twice differentiable and, by the Taylor

formula, we have

1
(2.12) ¢(t) = p(0) +1£'(0) + 5¢"(7), T€[0,1],
where ¢'(0) = (N’(ugi))pt), v — ugfco)pt) and

o' (1) = d2N(u(~k) +71(v-— u®) ) (v — RPNC) ).

J,0pt J,0pt J,0pt? J,0pt
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Using (2.12) together with (2.4), we obtain

#(0) = (V' (ufpe), 0 = ) = (v = ull).

7,0pt — %40pt k Jopt? © T Yjopt
’ ’ (b ’

Since v — u®) belongs to M;k) and M;k) is embedded into the kernel

Jropt
of l;i}pt, it follows that ¢'(0) = 0.

By a definition, the second Frechet differential d2N of N(-) is a
continuous symmetric bilinear function on X x X. Considering that
N () is convex on X, we show that d®N is positive semi-definite for
every v € X.

Let w € X, v e X, and

F@) = (L= t)[lull +t|lvf| = [[(1 = t)u+ to]].
It is evident that f(¢) > 0 and f(0) = f(1) = 0. Hence f/(0) > 0.
Applying the Taylor formula to f(t), we derive that

) = SO+ FO)+ 37'0) = 370 =F O 20

where 7 € [0, 1]. Since f/(7) = —d?N(u+7(v — u)) (v — u,v — u), we
have

EN(u+7(v—u))(v—u,v—u) > 0.
Putting in (2.12) ¢ = 1, we observe that

J,opt J,opt J,opt? J,opt

1
o | Xl | X1+ Sd*N (o, + T(0=ufi, ) (v = e v = ulon).

Hence ||v | X|| > |lul") . | X]|, and (2.11) holds.

Since Vj(k) is a closed convex subset of X, it follows that Vj(k) is
a Chebyshev set, and there is a unique function with (2.11). O

3. Extremal Functions and Splines of Affine Varieties

Let M be a closed linear subspace of X. Assume that M has finite
codimension in X. Given an element u € X, we consider V = u+ M
a flat parallel to M.

Definition 3. [6, p.576] Let up € X, and
up = argmin{|jv | X|| | v € V}.

Then ug is said to be a spline of V.
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Following [6], we can now consider the spline operator S : X — X
of M. By a definition, for every u € X S(u) is the spline of v + M.
Whence and from Definition 3 it follows that S = S(M) is the map-
ping I — Py, where I is the identity map on X and Ppy is the metric
projection of X onto M. Some authors use for the metric projec-
tion Pjs the term normal projection, or best approzimation operator,
or nearest point map, or Chebyshev map. By a definition, for every
u € X Pp(u) is the element of best approximation to u from M.
The spline operator S of M is homogeneous, i.e. S(Au) = AS(u) for
VA € R. The spline operator S is linear (resp. continuous) iff Py is
linear (resp. continuous). If X is a Hilbert space, then Py and S are
linear and continuous. The linearity of metric projections is an in-
frequent phenomenon in non-Hilbert spaces. There are examples of
linear metric projections in non-Hilbert spaces (see, e.g., [6, p. 580]).

Throughout the sequel we are interested in the spline operators of
the following sequence of the closed linear subspaces of X

MP={ve x| (1",v) =0, (6(z - 2™),v) = 0V 2™ € Nod'¥)}.

We are also interested in the splines of flats %(k):ﬁ(i,)pt—l- M;k) where

J
_(k 1 k . k . . .
u}o)pt = Wu;())pt. Evidently M]( ) has the finite codimension.

The spline operator of M;k) is denoted by S](k); S](k) =I- PM(k). Let
us show the validity of the following ’

Lemma 3. Let k < ky or (k = ki and j < j1). Then the equality
holds

(k1) g(k) _ g(k)
(3.1) S; VS =85
If the norm N(-) = ||- | X|| is a twice continuous (Frechet) differen-
tiable functional on X \ {0} then S](k)(ug.{co)pt) = “;{Z)pt'
Proof. Since S](fl)S;k) = S](.k) — P ) S](k), it follows that (3.1) holds

J1
iff
k

(3.2) Vue X S]( )(u) € ker P, )

J1

By Definition 3, ker P, ) ={w € X |w = S](fl)(w)}, and w belongs
J
to the kernel of P, (k) ilff

J1

(3.3) Voe M (N'(w),v)=0.
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Since S;k)(u) is the spline of u+ M](k), it follows from Corollary 3.1 [6,
p.584] that for all v € M;k) (N’(S](k)(u)), v) = 0. Using this equality,

together with the fact that for k < k; or (k = k; and 5 < j1) M](lkl)

is a subset of M;k), we arrive at the sought relation (3.3) where

w = S](k)(u). Consequently (3.2) is also valid.
If the norm N(-) = ||- | X|| is a twice continuous (Frechet) dif-
ferentiable functional on X \ {0} then (2.11) holds. Considering that
(k)

U opt € f/j(k) and using the homogeneity of S](k), we obtain

o) . =arg min{|jv | X|||v € f/j(k)} = S(k)(ﬁ(k) ).

J,op J j,0pt
Finally, by the homogeneity of S](k), we come to S](k)(ug.{co)pt) = “;{Z)pt'

ad

4. Multigrid and Error Multifunctional
with Agreement Conditions

Throughout the sequel we assume that

(S) the optimal error multifunctional consists of the pairwise distinct
functionals.

This assumption is not superfluous. An example is as follows.

Let {2 be the unit ball of R™ and let X be a space of harmonic
functions with domain (2. If members of X are continuous functions
in the closure of {2, then Mean Value Theorem implies that

1
(xn(z),u(z)) = (ﬁé(m),u(m)) for Vue X.

Now take an arbitrary multigrid A and assume that f:(lo) = 0. In this
event each optimal error functional is identically 0.

(0)

In general the initial functional /5’ does not agree with a linear
combination of Dirac delta functions, and the hypothesis (S) seems
to be very natural. We now dwell in more detail on the explanation
of this claim.

Let Nodgk) C Nodgfl). Then l;
in Nodgfl); and the weights of l;k) at the points of Nodgfl) \ Nodgk)
equal 0. Hence, Hl;f}o)pt | X~ < Hl;}kc}pt | X*||. If (%) =18 then

Ji,0pt — “jopt?

) is an error functional with nodes

e 1Y 1 = 1 ot | Y1 = - = M e LY N = IS e | Y-

J:opt Jj+1,0pt J1—1,0pt J1,0pt
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Since the optimal cubature formula with the given set Nodgfl) of
nodes is unique it follows that

A () R (0D A— (.

J,0pt J+1,0pt J1—1,0pt J1,0pt
Thus we extend the set Nodgk) of nodes to Nodgfl) and with it all
the norm of the optimal error functional does not decrease. Hence
some levels of the initial multigrid A contain of a few “irrelevant”
nodes and the hypothesis (S) means that we do not consider a multi-
grid with the “irrelevant” nodes. In this event we say that A and
the optimal error multifunctional satisfy the agreement conditions.
In particular, under assumption (S) for (k, j) # (k1,j1) we have

k k
41)  Nod®™ cNod™ — (i) |y < i) vy
(k) (k)

Lemma 4. Assuming (S) the extremal function U opi Jor L5 oy 18 not

20

equal to 0 at ;

Proof. Let ug O)pt(:i'gk)) = 0. Considering that ugco)pt equals 0 at the

nodes of Nodg ), we come to the conclusion that for j < o(k) — 1 the
equalities hold
(l(k) (k) ) = (l(o) uF) ) = (l(k) uF) ) = Hl

d+1,0p6) Yj0pt) = L1 7 Ujopt) = \joptr Yjopt

Rale

J:opt

Further, d1v1d1ng both 51des of this chains of the equalities by the

norm Hu] opt | X = Hlmpt | Y|, we obtain
(k) (k)
\ YU
| ¥ > o)
j+1.0p = Hu('k) X J.0p
7,0pt
which contradicts with (4.1). If j = o(k), then we must consider lg’:;lt)
instead of l§_|_)1 optr O

5. Constructing a A-Hierarchical Basis

Let b( )=yt (2; 5 )) By Lemma 4, b 7E 0, and we can deal with

%ji0pt
the function I)(Lk)u‘gi))pt( z). By Theorem 7, the function b_)ugko)pt is a
J

J
member of the following affine variety

fve X |(-3a"),0)=1; (- 5")v)=0v&" € Nod|"}.

J



Best approximation and hierarchical bases 101

Let ugo) . be the spline of this affine variety and let S( ) be the

corresponding spline operator, i.e.,

70 5<>( 1 k)

%j,0pt b(k) (k) Yiopt)-
J

By the definition of 5’ (k) , the function ﬁ;ko)pt agrees with the function

Ly () at the nodes of Nod U {:L' } If k< ky or (k=k; and

p(F) %j,0pt\ T
J
7 < j1), then it follows in much the same way as in Lemma 3 that

Glki) (k) _ alk),  alk)~(k) \ _ ~(k)
(51) S Sz —S] ’ S] (uj,opt) U

Ji J Jj,opt”

Lemma 5. For given integers k and j there is a unique function h;k)
such that
_(k -
h( ) € span {u] opt(m)’ u;—l—)l,opt(m)’ Tt uo-(l:),opt(m)}

and (1.1) holds. Assuming h; )= S((;Izl)c)

Ha={h" |k=0,1,...;5=1,2,...,0(k)}

1s a A-hierarchical system of X . If for an arbitrary k the spline op-
erator S((rlz,)c) is linear then h;k) = ﬁ;k)(m)

(h;k)), the set

Proof. Given k and j we seek a solution h;k) to (1.1) in the form of the

linear combination of the splines ugko)pt, ﬁ;lj_)l opk? * 9 ﬁ((rlzc) opt” To be
more precise, we assume that u((rlzc)_l_l opt = ﬁ(lk;:t) for k=0,1,2,...,

and suppose

w _ T ()
(5.2) R =y ol W opt — Tt
=1
Examine that there are a(J’k) i=1,2,...,0(k) — 7+ 1, such that
h;k)(:vg_l_)l) =0 for 1=1,2,...,0(k)—,
. Zj—l—la(j M.

By (2.7), we can write the last equalities in the equivalent form
, (k k) o~k
Z aij ]—I—)z opt(m‘g-l—)l) = u;,o)pt(w;-l—)l)’

1=1,2,...,0(k) - j;
o(k)—j+1 .
P oM =1,
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It is a system of linear equations with respect to unknown coefli-

(5.k) (3.k)

cients (ag" .. Q) . The matrix of this system is subdiago-

—i1)
nal with 1 on the main diagonal. Hence, this matrix is non-singular;

(5.k) (3.k)

and there exists a unique solution (a;”", .. ., ao‘(k)—j—l—l) to the system
under consideration.

Thus, function h;k) is uniquely determined, and it is easy to show
that (1.1) holds and H A is actually a A-hierarchical system of X.

Let S;Izl)c), k=0,1,2,..., be linear spline operators. By the defi-

nition of h;k) it follows from (5.1) that

i " i 50 o0 5(4) (o (F)
Ryt =D oS ope) = S5 (8 0p0)-
=1
Applying S((rlz,)c) to both sides of the last equality and using (5.1) again,

® _H0 g

we arrive at the sought equality Bj i

Theorem 9. If there is a Frechet differential of ||- | Y| atl € Y,
l # 0, and the spline operators S;Izl)c), k=0,1,..., are linear then

Ha={i"@) [ k=0,1,...;5=1,2,...,0(k)}
1s a A-hierarchical basis of X.

Proof. Since the spline operators S;’E,l), k = 0,1,..., are linear it
(k) _ (k)
i =h
an arbitrary function ¢ € X in the series with respect to h
check the convergence of this series in the norm of X.

. Hence it is sufficient to expand

(%)

3

follows from Lemma 5 that A

and

For a given function ¢ € X and a positive integer m there are

onts o) _ 28w

coefficients g;' of the sum oy,(2) = 3> > g; h;’(z) such that
k=0 j=1

om(z) = ¢(z) for Vo € A,,. Considering that H 4 is a A-hierarchical

system by easy calculations we obtain the following recurrent rela-

tions for g](.k) (see [15] and [16])
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and further for k =1,2,...,m

g;k) — U'm(f};k)) — Sok—l(é‘gk)) = go(f);k)) Pl— 1(£§k))a
) — 1,2,. .,U(k),
a(k)
‘7:

(%)

The coeflicients g, are independent of m. Hence the function oy, (z)

" g0p0
is a partial sum of the series Z > 9;'h
k=0 j=1

to ¢(z) in the norm of X iff lgn ll¢ — om | X|| = 0. Let us show

. This series is convergent

that it is a valid equality.

By the definition of ¢,,,(2) and from the property of S(( )) it follows

that S((r?(zl)(go) = Si?nl)(am) The linearity of S((r(n)l) together with

Lemma 5 and equalities (5.1) imply that

. w o) o)
(m) (o y_ () glm) 7 (F)y _ () glm) (k) (1 (0)
Sotm(om) = 2 2 0780 () = 2 037800 Sy (05
m o(k) . m o(k)
=¥ % 675,00 = & % g8 = on.
=0 j=1 k=0 j=1

We now show that hm lo—om | X|| = hm lo— S ( )| X]||=0.
Let M(™ —{v€X|v( )—OVigp)EAm} and
V() =+ M.

Then V™ +(p) € V™) (). Since ¢ € -, V™ (p) it follows that
for m = 0,1, ... the inequalities hold

(5:3) IS5 @ I X <UL @) | XN < Nl | X

Hence the bounded sequence {]\5’((’7”1) (¢) | X||}oo—( of norms increases
to a finite limit A;

(5.4) Tim |55 (6) | X = A<l | X[ < oo.

Because X is reflexive, there is a weak convergent subsequence of
{S;Tnl)(go)}%ozo. Let ¥ be the weak limit of the subsequence; @ €
X. For simplicity and without loss of generality, we assume that
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{5’((:(2 (@) }oo_q is weakly convergent to @. Then for Va":;k)e Um=0 4m
the equalities hold

2(@) = (52— &), 7) = lim (6(z — 2), 5% () = p(al").

The difference ¢ — @ is continuous in £2 and equals 0 at the > nodes of
Um=0 Am- By the assumption, the set |J;;_y A is dense in {2. Hence
¢ — 1 is identically equal to 0 in £2; and the weak limit of the spline
(m)
(

sequence {S m)(go)}%ozo coincides with ¢. Let us show that splines

S0m (¢) converge to ¢ in the norm of X.

a(m)

m=0

(5.4) that 7*(¢) satisfies

Since {5’((:(2)((,0) *_, is weakly convergent to ¢ it follows from
le | X112 = (x*(¢), ) = lim (7(¢), S50 (#))
<l (@) | Y1 Lim (15500 (0) | X[ < Alle | X

Consequently, ||¢ | X|| < A. This estimation together with (5.4)
implies

(5.5) lp | X| = A= Tim 155 (¢) | X].
Put v, = mg(%i)(go) Then ||v,, | X|| = 1. Applying
o(m)

(5.5), it is not hard to validate that {v,,}:°_, converges weakly to
—||¢|1X||90. In particular, the equalities hold

1 1

lim (7 (), ) = (7"(¢),9) = L.
m=oo|m=(¢) | X|| le [ XMllm(e) [ X
Given the member ! = W*(mgo) of the unit sphere of Y, we have
pointed out the sequence {v,,}oc_, of members of the unit sphere
of X = Y™ such that lgn (I,vm) = 1. By the hypothesis, there is
a Frechet differential & = N5'(I) of the norm |- | Y| at I € Y.
Considering that (2.6) holds we have N5'(I) = N(*;’/(W*(”(J—X”SD)) =
”(p|1—X||QD. By the Shmulian criterion [7, p. 147], {v,, }re— must converge
to @ = ”(p|1—X||QD in the norm of X. The proof of the convergence in
more detail is as follows.
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If ||vy, — ®|| - 0, then 3¢ > 0 and {l,};°_, C Y such that
llm | Y] =1 and (I, v — P) > 2 for Vm > 1. Let

- 1 -
b = Z(ITY [ = (5 vm)lon = b [ Y [[Er-
Then ||i,, | Y| = 1(1-(I,vm)) — 0 and

U+ Ty vm) — 1 = (I, D)
[l | Y]]

[+ [ Y = Y]] = (Em, @)
1l | Yl

>

:(,’U ) —I_H,_ | H( ke ):_5+(lmavm_¢)2€a
|l | Y|

which contradicts that @ is a Frechet differential of ||- | Y| at l € Y.
Finally, the equality holds lgn ||vs, — @|| = 0. Whence and from

(5.5) the spline sequence {5’((:(2)((,0) }oo_, converges to ¢ in the norm
of X. O
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