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Summary. We study the properties of hierarchical bases in the
space of continuous functions with bounded domain and construct
the hierarchical cubature formulas. Hierarchical systems of functions
are similar to the well-known Faber — Schauder basis. It is shown that
arbitrary hierarchical basis generates a scale of Hilbert subspaces in
the space of continuous functions. The scale in many respects is sim-
ilar to the usual classification of functional spaces with respect to
smoothness. By integration over initial domain the standard interpo-
lation formula for the given continuous integrand, we construct the
hierarchical cubature formulas and prove that each of these formulas
is optimal simultaneously in all Hilbert subspaces associated with the
initial hierarchical basis. Hence, we have constructed the universally
optimal cubature formulas.
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1. Introduction

Let {2 be a bounded domain in R"; k is a non-negative integer; and
Ay = {a:;k) € 21]j=12,...,N(k)} is a finite subset of 2. We
assume that Ag C Ay C -+ C A C --- C £2 and the union of all A
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is dense in {2, i.e.,

([j A) =1

The sequence A = {A;}72, is said to be a multigrid in 2; Ay is a
k—level of A; and vectors a:;k) € 12 are nodes of A.
Given a positive integer k, we introduce two real numbers h;, and

h;, by putting

(1.1)  hr=sup{ inf |z —y|}; h,=inf{|le—y||z,yc AL}
e yEA T£Y

By the definition, 0 < h;, < hy. If Ay, ‘tends to zero as k — oo then
the union of Ay, is obviously dense in {2. We also assume that

(1.2) hpyy <hpand o€ (0,1): ahy < by < hg, k=0,1,2,....

Together with k—levels of the multigrid A we deal with their differ-
ences defined as follows

A\ A =3 |5 =1,2,...0(k)}, k=1.2,....

If & = 0 then f:;o) = J);O), 7=1,2,...,0(0) = N(0). It is obvious that
o(0)+o(l)+---+o(k) = N(k).

Let C(42) be the Banach space of functions which are continuous
in £2. For u € C(f2) and = € {2 the value of u at & € {2 is defined.
Hence, we can consider the vectors

A(A ] w) = (w@P),uEl),. .. w@ ")),

where £k = 0, 1, .... From the vectors Ap(A | u) we compose the
following infinite sequence

up = (A1(A | ), Ax(A | ), ..., An(A | w),...).

We will operate by u4 as an infinite column-vector.
By the definition, we have

lua ||| = sup |u(z)| < sup [u(z)| = ||lu | C(2)]].
zEA zES?

Whence the linear operator T4 : C(£2) — I transformed the func-

tions u(z) from C'(£2) into the sequence up € I is bounded. We call
the vector ua = Ta(u) a trace of u on the multigrid A.
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Let H be a countable subset of C(£2),
H={"@)ec@)|j=1,2,..,0(k);k=0,1,...}

In this paper, we consider H such that for members of H the following
equalities hold

Here 5; is the conventional Kronecker delta.
Definition 1. If (1.3) holds then H is called a hierarchical system.

From (1.3) it follows that all functions k4, hs, .. ., has of a hierarchical
system H are linearly independent.

By the definition, if H is a hierarchical system and h;k)(az) €H

then the trace <h§~k)>A of h;k) on the multigrid A has zeroes as the
entries in positions 1,2, ..., N(k—1)+7—1, N(k—-1)+j+1,..., N(k);
and the entry of <h§~k)> A in position N (k — 1) + j equals 1.

Let H be a hierarchical system and let Ua be the matrix which

has the traces <h§~k)>A as columns, i.e.,

UA:(hg?g,hg?g,...,hg;g)’A,...,hg'jA,...,h;.{j\,...,hgm ).
Then Ua is a subdiagonal matrix with 1 on the main diagonal.

By the same way as in definition 1, we can define a hierarchi-
cal system in a Hilbert space. In [8], [9], and [3], it was shown that
hierarchical systems in Sobolev-like spaces may be constructed as
sequences of interpolating D™ —splines. It should be noted that hier-
archical systems are frequently applied to the solution of boundary
value problems by the method of finite elements (see, e.g., [2], [5], [6],
and [11]). Hierarchical systems in Hilbert spaces such as Sobolev-like
spaces are studied in [4].

Definition 2. If a A-hierarchical system H in C(£2) is a basis of

C(£2), then H 1is called a hierarchical basts.

Ezample 1. The well-known Faber — Schauder system is a hierarchi-
cal basis of C[0, 1], (see [7, p. 227]).
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Given a non-negative integer m and a hierarchical basis
H={@) ecc@|j=1,2...,0(k);k=0,1,...}
in C(£2), we define the members of the following finite set
{wi (@) ]i=0,1,...,m1=1,2,...,0(:)}.

by the equalities

%) ~(k k
m @ el @),
k=1+1 j=1
i=m—-1m-2,...,0, 1=1,2,...,0(7)

By the definition of H, the following equalities hold

W (W) = ks, i k=0,1,...,m,
1=1,2,...,0(i), j§=1,2,...,0(k).

Given a continuous function ¢(z) with domain {2, we consider the
following interpolation formula

By integration of the both sides of this approximate equality, we
obtain the cubature formula

(1.4) [e@dz=y"Y e,

0 k=0 j=1

with ¢ the weights defined as follows

Jm
(1.5) cgfg;oz/w](ﬁzl(m) de, k=0,1,...,m,5=1,2,...,0(k).

2

The formula (1.4) will be referred to as the hierarchical cubature for-
mula. Our goal in this paper is to study the properties of cubature
formulas of the form (1.4).
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2. Hilbert spaces associated with a hierarchical basis

Let H = {h;k)(:v) |7=1,2,...,0(k); k=0,1,...} be a hierarchical
basis in C(£2). Given a function ¢(z) from C(£2), we can expand it
in the series

(2.1) e2) =33 P ().

The coeflicients g](.k) = g](.k)(go) of (2.1) are uniquely determined by

a function . The partial sums of (2.1) converge to ¢() in the norm

of C(2). If p(z) = h;m)(a}) then we have

2.2) g P(n™y=6fsk, j=1,...,0(k),
I=1,...,0(m), km ,1,2,....

Together with the hierarchical basis H we introduce into considera-

tion a numerical sequence {h(m)}>°_,, by putting

h(m) = sup{|h{™ (@) [ j = 1,2,...,0(m)}.
e

Let {a,,}oo_, be a sequence of positive numbers such that

o 9 1/2
(2.3) Ly (am) = {Z W} < 0.

Given a sequence {a,,}>°_,, we define the linear subspace X (*»)(£2)

- C m=0
of C(§2) as follows

(2.4) xm) () = {go cC(2 Za Z |gJ )2 <oo} .

Since (2.2) holds, it follows that h;k) (2) belonging to H is also a mem-
ber of X(@m)(02). Hence, X(¢")(£2) is an infinite-dimensional linear
space.

We introduce a bilinear form in the space X(“'")(.Q), by letting for
all functions ¢ and ¥

(2.5) (P, )= af . gk ]('k)(Tﬁ)-
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Applying the Cauchy inequality for sums to the right side of (2.5),
we obtain

{0, )] < () () <

Hence, for ¢ and ¢ from X (4m)(£2) the series in the right side of (2.5)
converges absolutely.

Theorem 1. Functions from the hierarchical basis H are mutually
orthogonal in the inner product (-,-) defined by (2.5). If the corre-
sponding norm is denoted by (-) then for a function ¢ belonging to
X(@m) () (2.1) converges not only in the norm of C(£2) but in the
norm (-) too.

Proof. To begin with, we consider the bilinear form (2.5). By the def-
inition, it follows that (¢, %) is a symmetric and linear form with re-
spect to ¢ and . By (2.5), for a function ¢ in X (am) (£2) the inequality
(¢, @) > 0 holds. If ¢ = 0 then g](.k)(go) =0, and (p, ¢) = 0. Converse-

ly, let (¢, ) = 0 for a function ¢ in X(@m)(£2). Then g](.k)(go) =0 for
all k£ and j; and the partial sums of (2.1) are equal to 0 everywhere
in domain §2. Hence, the limit of these partial sums is also equal to
0,i.e.,=0.

Thus, we have proved that the bilinear form (2.5) is an inner prod-
uct in X(“'")(.Q). The corresponding norm is defined by the equality

(@) = (@, 0)"/%.
Since (2.2) and (2.5) hold, it follows that

(™, )y = 3 a2 3 gl (™) g (R

2=0 n=1
0o a(7)
_ 2 ngt Sn st 2 sk gl
=S a? Y 616,678 = a2 ok .
=0 n=1

Hence, functions from the hierarchical basis H are mutually orthog-
onal in the inner product (-,-), and for the norm of h;m)(a}) in this

(

inner product we have <hlm)> = Q.

Let ¢, () be the partial sum of (2.1), i.e

The orthogonality of the basis functions h;k)(:zz) implies

oo o (k)

(p—em)?=3 a > 19 (¢)

k=m+1 j=1
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By the definition of X (*m)(£2), the sequence of the sums in the right
side of the last equality converges to 0 as m tends to infinity. It means
that (2.1) converges to ¢ in the norm (-). O

Let H be a hierarchical basis in C'(£2) and let ¢,,,(z) be the partial
sum of the series (2.1), i.e.,

a(0)
Po(z) = 3 9 ()r (@),
‘7:
o‘(m)

(2.6)

Then the following equalities hold

(2.7) em(@™) = p(@l™), j=1,2,...,N(m).
The function ¢,, () is said to be a standard interpolant for ¢(z).

Lemma 1. For an arbitrary ¢(z) € C(£2) coefficients g;.k)(go) of (2.1)
may be defined by

(0)

() GO =P, =120 (0)

g] (SD) = 90(53 m)) - @m—l(igm))a ] = 1a 2a .. .,cr(m), m 2 1.

e T

“

For a given positive integer N there is a positive real number Ay with

N o(m)
(2.9) {3 a2 Y 1™ ()12 < Axlle | C(@)]].
m=0 7=1

(%)

Here Ay does not depend on ¢. Hence, linear functionals g; () are

bounded on C(12).

Proof. By the definition of H, (2.6), together with (2.7), yields (2.8).
It is not hard to show by induction on m that the inequality holds

sup [ (2)] < G(m) sup ()],
TES? z€EAm
where G(0) = ¢(0) and G(m) = o(m)h(m)+G(m—1)(1+0o(m)h(m))
for m > 1. This, together with (2.8), yields

195 (@)] < (1 + G(m ~ 1))sup [¢(@)]

N
Hence, (2.9) holds with Ay = {3 a(m)a2,|1+ G(m —1)|?}/2. O

m=0
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Theorem 2. The space X *m) () with the norm (-) is complete and
so it is a Hilbert space. The embedding of X (¢m)(£2) in C(2) is bound-
ed and for an arbitrary function ¢ from X (“m)(ﬁ) the following in-
equality holds

(210) e | CDN < Lu(am){p),
with Ly (a,,) the constant defined by (2.3).

Proof. Let ¢(z) be a member of X(4m)(£2). Then the corresponding
series (2.1) converges to ¢(z) both in the norm of C(£2) and in the
norm of X (4m)(£2). Whence and from the definition of {h(m)}2_, it
follows that

oo (k)
|<ZZ|9 IR @) < > hk) S 10 ()

kO]l k=0

Applying the Cauchy inequality for sums to the right side of this
inequality, we obtain

[ee)

<Y h(k)oH (R {Z 9@ < Lir(am) ().

k=0
Thus, we have proved (2.10).
Let {¢®)(2)}3, be a Cauchy sequence in the space X (*»)(£2). By

(2.10), it also is a Cauchy sequence in the space C (£2). Consequently,
there exists a function ¢(z) in C(§2) with

(2.11) lim sup |p(2) — ) (2)| = 0.
k—=oo 7

Moreover, there exists a positive real number R such that

sup (M) < R < oo.
k>1

Let N be an integer and let ¢x(z) be the partial sum of (2.1).
Then

N o(m)
212) (o) < {02 Y 19i™ (0 — o) 232 4 sup (o).
m=0 7=1

E>1

To estimate the first summand in the right side of (2.12) we use (2.9)
and obtain

(2.13) (en) < Anlle — o | C(02 )||+2ng< o),
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where Ay is independent of ¢ and ¢(*). Since (2.11) and (2.13) hold
it follows that for a given integer N there exists a number K = K(N)
such that for £ > K(N) the first summand in the right side of (2.13)
is less then R. Hence,

(pn) < 2R and (@)= A}im (¢n) < 2R < o0,
— 00

ie., p(z) is a member of X (¢m) ().

Let us check that (¢ — ¢*)) — 0 as k — oo. It is well-known that
there exists a completion X (£2) of a space X (*»)(£2) with the inner
product (-, -). In addition, X (*m)(£2) is dense in X (£2). Since X (£2)
is complete it follows that there exists an element ¢ € X (2) such
that (¢ — (,o(k)> — 0 as k — oo. By (2.10), we may consider ¢ as
a continuous function with domain 2. Moreover, the initial sequence
{o®)(2)}52, converges to % in the norm of C(§2). By uniqueness of
the limit, we conclude that ¢ = . In other words, X (#m) (£2) coincides
with X(£2), i.e., X(@m)(2) is a Hilbert space. 0O

Corollary 1. Let (z) be a member of X@m)(02) and let ¢,,(z) be
the partial sum of (2.1). Then

o0 oo a(k)
(2.14) o(2) = pol(2)+_(pr(@) —er-1(2) = > Y i (0)nl" (@),
k=1

k=0 j=1
The series in the right side of (2.14) converges to ¢ in the norm (-).

By (2.14), we can split the identical operator into the direct sum
of projections of X(“'")(.Q) to the finite-dimensional subspaces of
X (am)(£2). Hence, (2.14) is similar to the multi-level splitting of finite
element spaces (see [11, p. 383]).

3. The optimality of the hierarchical cubature formulas

In this section, we consider cubature formulas of the form

(3.1) /go(a:) de=Y" . M (@)

Integrable functions are assumed to be members of some Hilbert space
X (@) (£2) embedded into C(£2); the nodes of formula (3.1) are the
members of m-level A,, of the multigrid A; and the number of the
nodes equals N(m).

To each cubature formula (3.1) we assign the error
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(3:2) () = [ o(@)dz = 3" S el (a1,

0 k=0 j=1

The error is a linear functional, therefore also referred to as error
functional, since we require that the rules for choosing the nodes
and the weights of (3.1) be independent of specifying an integrable
function. We consider the following problem.

Problem 1. Given a Hilbert space X(“k)(.Q) and a positive integer
m, find the error ( 32¥ with N (m) nodes and the minimal norm in
the space duel to X (%) (12).

The cubature formula corresponding to the solution of Probleml is
said to be an X (%) (£2)-optimal formula.

Theorem 3. For a positive integer m there is a unique X (“k)(ﬁ)-
optimal cubature formula of the form (3.1). The weights of X (%) (£2)-
optimal cubature formula are defined by (1.5), i.e., this formula is
hierarchical cubature formula (1.4).

Proof. By the Riesz Theorem, the error functional /,,, defined by (3.2)
may be written as inner product

(3.3) (s ) = (um, @), Ve € X1¥(02).
(

Here u,, is a uniquely determined member of X (*+)(£2) called the ez-
tremal function of l,,, or, more verbosely, X (“k)(ﬁ)—e:vtremal function.
Moreover, the following equalities hold
a(k) ®)

|gj (um)|2

(3-4) 11 | XD = (um)® =) af

k=0 =1
The extremal function u,, expands into a series in h;k)(a:). Moreover,
the coefficient g;k)(um) of h;k)(:zz) is defined by
(35) 97" (wm) = (m, 15) 01 = (b, 151) 0.
This, together with (3.4), yields
(k))|2

(3.6) 1l | X @7 (2)]]2 = 227

k=0 j=1
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—
o
R

If £ > m then the values of h;" at the points of A,, are equal to 0.

Hence, we get

(I, )Y = / W () de = b for k> m.
02

Inserting these equalities in (3.6), we obtain

M)
(3.7) L | X @)= (2)]% > |

k=m+1 j=1

Let I2, be the error corresponding to hierarchical cubature formu-
la (1.4) and let u2, be the extremal function of [2,. By the definition,
we have

0 plk)y _ — _
(lm,hj )=0 for k=0,1,...,m,j=1,2,...,0(k).
Whence and from (3.6) it follows that

bk)

(38) 115, | X )= (2)]]” = Z
k=m+1

7=1

Since (3.7) and (3.8) hold, the X(*¥)(£)-optimality of hierarchical
cubature formula (1.4) is immediate.

By the parallelogram law, an X(“k)(ﬁ)—optimal cubature formula
is unique. 0O

It is well-known that the same cubature formula may be optimal
simultaneously in many normed spaces not necessarily equivalent to
one another. The formulas with such properties is called to be univer-
sally optimal cubature formulas (see, e.g., [1] and [10]). By Theorem 3,
hierarchical cubature formula (1.4) is the universally optimal cuba-
ture formula on the family of Hilbert spaces introduced in section 2.
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