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1. Introduction

The problem of constructing approximate projections onto invariant
subspaces of matrices is a very important problem of linear algebra
and numerical mathematics. At present, there are some algorithms
for constructing approximate projections (see, for example, [1-5]).

This paper is devoted to the dichotomy problem for the matrix
spectrum with respect to the imaginary axis. The matrix sign func-
tion method is the most popular method of constructing approximate
projections for solving this problem. This method has been the sub-
ject of numerous studies (see, for example, [6-13]).
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In 1996, the first author proposed a new method for construct-
ing approximate projections onto invariant subspaces of linear op-
erators [14]. This method is functional and based on the following
theorem [14, 15].

Theorem 1. Let T : B — B be a linear continuous operator in a
Banach space B, and let T have the inverse operator T~'. Suppose
that there is a projection P : B — B such that

PT =TP, \TP| <1, |T~(I - P)|| < 1.
Then the operator I — T has the continuous inverse one (I — T)7?,
(I-T)'=(I-TP)'P-(I-T'I-P)'TI-P)
=P+ TPI-TP)y ' -T*I-P)I-T'(1-P))™!

and
(1.1) (T =T)" = Pl < TP - |ITP|)~"

HIT™HI = P = IT7H (T - P~
Remark 1. As follows from the above estimate, if

ITP|~0, |IT(I- P)|~0,
then
(I-T)y'=P

Some applications of Theorem 1 to constructing approximate pro-
jections are presented in [16]. By Theorem 1, one can obtain a modi-
fication of the matrix sign function method [15]. In the present paper,
we consider this modification of the matrix sign function method. By
our means, such modification is very simple for computations.

2. Modification of the matrix sign function method

In this section we illustrate an application of Theorem 1 to the prob-
lem of constructing approximate projections onto invariant subspaces
of matrices.

Let A be N x N matrix and I be the identity N X N matrix. Sup-
pose that the matrix A has no purely imaginary eigenvalues. Eigen-
values of the matrix A are unknown. By P_ we denote the projection
onto the maximal invariant subspace of A corresponding to eigenval-
ues lying in the left half-plane

C_={AeC:ReX <0}



A modification of the matrix sign function method 49

By P, we denote the projection onto the maximal invariant subspace
of A corresponding to eigenvalues lying in the right half-plane

Ci={AeC:ReX>0}.

We suppose
P.A=AP , P_+4+ P, =1.

Throughout the paper, ||A|| denotes the spectral norm of A.
Consider the sequence {U}}, where

(2.1) Up=(tA+ DFrA - D)7,

r=1/2 it A <1,
r= @A i 4] > 1.

Using M.G.Krein’s lemma on “W-dissipative” operators [17], one can
show that

|UP-|| =0, U = P)|[ =0, koo

Hence, by Theorem 1, for any sufficiently large & > 1 there exists
an inverse matrix

(I — Uk)_l;

and
(I-U) =P, (I-UYHY"=Py, k— oo

Then,
(2.2) Px(I-Uy)™, Prm(I-UYH)" k>l

Theorem 2. Formulae (2.2) is a modification of the matriz sign
function method.

Proof. Using the matrix sign function method [1, 2], we have

1 1
(2.3) Porns(I-X), Prms(I+X), U>1,

where .
Xo=74, X;= 5(X,_1 + X0, I=1,2,..

By the definition of the sequence {X;}, we obtain
(2.4) 20X+ DX = (X1 + 1),

(2.5) 2(X; - DXy = (X1 — D)2
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According to (2.4),
2AX+ DX — DX1_y = (X1 — D(Xi21 + D%

Taking into account (2.5), we have

(2.6) (X +D( X1 - 1) = (X; - D)(X_1+ 12
Similarly,

(2.7) 22X+ DXja = (X1_g + 1)?,

(2.8) 20X, - DX1_a= (X2 —1)?, 1=2,3,...

Multiply both sides of (2.6) by (2X;_2)*. Then,
(X; + D[2(X121 — DXi_0)? = (X — D[2(X-1 + D X_5]%
Consequently, by (2.7) and (2.8), we obtain
(X + ) (X1_s— )P = (X, = D)(X1—a+ D).
In the same way, we have
(X + 1) (Xo— D = (X, — I)(Xo+ I)?.
Since Xy = 7A, it follows that || X|| < 1/2. Hence,

l

(X1 + 1) = (X1 — I)(Xo+ I)* (Xo — I) 2
. (Xl—I—I):(Xl—I)U2l.

Then,
Xi(I—Uu)=—-I-Usy.

Since for sufficiently large I > 1 the operator I — Uy has an inverse
one, we have

X1 = Uy — )7 (I + Uy).
Rewrite X; as follows
X = Uy — )" YUy — I +2I)
=T 42Uy~ )t =1-2(I - Uy)™*

or

1
5(I - X))={-Uy) ™"
Therefore, formulae (2.2) for k = 2! coincide with (2.3). O
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Corollary 1. If k = 2! and 1 is sufficiently large, then approzimate
construction (2.2) coincides with approrimate construction (2.3):

P.x(I-Uy)™t = (I - Xy),

P~ (I-U;Y?t = 3(I+X).

Remark 2. When a matrix A has eigenvalues on the imaginary axis,
its matrix sign function is not defined. But using Theorem 1, one can
solve the trichotomy problem (see [15]).

Remark 3. By the definition of Uy, it is necessary to calculate one
inverse matrix only, and by the definition of X, it is necessary to
calculate ! inverse matrices.

3. Convergence rate of the sequence of approximate
projections

We will estimate the convergence rate of the sequence of approximate
projections

(3.1) (I-U) =P, (I-UYt=Py k— oo,

where the matrices U}, are defined by (2.1). To do it we consider the
Lyapunov type integrals

Hy = /(eSAP_)*eSAP_ ds,
0
oy :/(e_SAP_|_)*e_3AP_|_ ds.

0
Obviously, the matrices H,, HS' are Hermitian,
Hy >0, Hf >0, H=H; + Hf >0,
and the equalities
(3.2) Hy A+ A*Hy = -P*P_, HfA+ A*Hf = P;P;

are true.
Using (3.2), one can show the following equalities

(rA* = I)"Y(r A"+ I)Hy (tA+ I)(tA-I)"' — Hy
3.3
3.8) = 27(rA* - )"'P*P_(rA- 1),
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(TA*+ )N (rA* = DHf (rA - I)(tA+ )" — Hf
(3.4)
= 27(tA"+ 1) 'Pi Py (tA+ I)7L.
Indeed, rewrite the left hand-side of (3.3) as follows
(tA* — )Y rA*+ H; (tA+ ) (rA-I)"' — Hy
= (rA* - 1) (A" + )H; (tA+ 1)

— (A" —DHy;(rA-1T)) (tA-D)7!

= (TA* — I)_l (TzA*HO_A +THy A+ TA*H + Hy

— 7'2A*H0_A +7Hy A+ T1A*H, — H0_>(7'A — I)_l

= (rA* - 1) (2r(Hy A+ A*Hj)) (rA— 1)~

Taking into account (3.2), we have (3.3). Similarly, we can obtain (3.4).
Determine the matrices

S_=(FA - rA-D7Y, S =(@FA 4+ A+ D)L
The matrices are Hermitian positive definite. Then,

s_ = |n|1in<S_u, u) >0, sy = |IITiIl<S_|_u, uy > 0.
ul=1 u|=1

Hence, for any vector u € Ex we have
(3.5) (S_u,u) > slul?,  (Syu,u) > slul?,

where s = min{s_, s }.
Note that, using (2.1) and the property AP_ = P_A, equalities
(3.3) and (3.4) can be written as follows

UfH Uy — Hy = -2tP*S_P_,
(UTYHfU - Hf = —27P; S, Py.
By P2 = P_, P_|2_ = P, , for any vector v € E this yields
(HyUyP_v, Uy P_v) = (Hy P_v, P_v) — 21(S_P_v, P_v),

(HFf U Pyv, U Pyw) = (HY Pyv, Pyv) — 27(Sy Pyv, Pyv).
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Rewrite the equalities by using the Hermitian positive definite matrix
H=H; +H.
Since
HP_  =H;P., HP, =H}P,,
U,P.=P.U, U 'P,=PU,
it follows that
(3.6) (HU,P_v,UP_v) = (HP_v, P_v) — 21(S_P_v, P_v),

(3.7) (HU['Piv,U'Pyv) = (HPyv, Pyv) — 27(S, Pyv, P1v).

Taking into account (3.5) and the estimate

1
(38) —<Hu’ ’U,> S |u|2a U € ENa
I H||
we obtain
27s
(3.9) (HUP_v,UP_v) < (1 - m) (HP_v, P_v),
1 1 27s
(310) <HU1 P_|_’U,U1 P_|_’U>§ ]_—m <HP_|_’U,P_|_’U>.

Since the matrices
Ha Ul*HUla (Ul_l)*HUl_l
are Hermitian positive definite and P_ 4+ P, = I, it follows that

27s
I H||

The following theorem gives estimates of the convergence ratein (3.1).

(3.11) g=1 > 0.

Theorem 3. There exists a natural number kg such that for k > kg
the following estimates hold

(312)  P- (I~ U) M <oy (1—ap) ™t +af (L —af) !

(313) [Py —(I-U) < op(1—ap)  +af(1-af)7,
where
a, = Vcond H||P_||¢"?, o;f = +/cond H||Py|lg"?,

cond H = ||HI|||H ],
and q € (0, 1) is defined by (3.11).
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Proof. By (2.1) and (3.6), we have
(HURP_v, UpP_v) = (HU_1P_v, Up_1 P_v)

—27(S_Up_1P_v,Up_1P_v), v€EN, k>1
Taking into account (3.5) and (3.8), we obtain
27s
]
Hence, for any natural k the estimate
(HULP_v, Uy P_v) < ¢* Y (HU,P_v, U, P_v)
holds. By (3.9),
(HULP_v, Uy P-v) < g*||H ][]0

(HURP_v, UpP_v) < (1 ><HUk_1P_v, Uk—1P_v).

Using (3.7) and (3.10), in the same way one can prove the estimate
(HU;'Pyv, Uy Pro) < @[ H|||Py||vf.
From these inequalities we have
|ULP-v[* < ¢"|[H Y| H[||P- ||,
U Pro” < ¢ HYIH| PP, v € En.
Hence,
|0RPI| < ¢/*eond HI|P_|| = o,
107 P4l < ¢*/Veond H||Py | = af
By (8.11), there exists kg such that o <1, a,': < 1 for any k > k.
Consequently, from (1.1) we obtain (3.12) and (3.13). O

4. Perturbation of the matrix spectrum

In this section we give conditions on matrix perturbations. The con-
ditions are used for numerical solving of the dichotomy problem (see
analogous results in [4, 7]).

Theorem 4. Let the spectrum of the matriz A do not cross with the
mmaginary axis. If for a matric A, the inequality

(4.1) 2!\A1H<HHJH 2HAHHHJH+HHJH\/2HAHHHJH><1

is true, then the spectrum of the matric A+ Ay does not cross with the
mmaginary azis too. Moreover, the number of eigenvalues of A + A
in the left half-plane C_ equals the number of eigenvalues of A in the
left half-plane.
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Proof. Consider the system of ordinary differential equations on the
real axis

d
(4.2) —=Bu+f(t), teR.
According to properties of the Fourier transform, the system has a
solution u(¢) in the Sobolev space W.(R) for any vector function
f(t) € Ly(R) if and only if the linear system

-~

(&1 - By = fl6), ¢en,
has a solution u(§), £u(§) € L2(R) for any f(f) € Ly(R). The system
has such solution u(€) if and only if the matrix B has no purely imag-
inary eigenvalues. Obviously, the solution u(t) € W (R) is unique.

By the conditions of the theorem, if B = A, then for any f(¢) €
Ly(R) system (4.2) has a unique solution u(t) € W,](R) and the
following representation

(4.3)  u(t) = Rf(t) = / AP f(s)ds — / et=)4Pp, f(s)ds

is true, where P_ is the projection onto the maximal invariant sub-
space of the matrix A corresponding to the eigenvalues lying in the
left half-plane, P~ A = AP_, P_ 4+ P, = I. Hence, it is enough to
prove that the system

d
(4.4) d—'t‘ = (A+ A)u+ F(t), teR,

has a solution u(t) € W, (R) for an arbitrary vector function F(t) €
Ly(R).

We will construct a solution of system (4.4) in the form

u(t) = Rf(t), f(t) € Lz(R),

where the operator R is defined by (4.3). Obviously, a vector function
f(t) must be a solution of the integral equation

(4.5) f(t) — A1Rf(t) = F(¢).
Show the estimate

(4.6) [A1Rf(t), L2(R)I| < qll F(2), L2(R)I[, ¢ <1.
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Using the Heaviside function 6(t), the expression A;Rf(t) can be
written as follows

[ee)

ARf(t) = Ay / o(t — s)etIAP_f(s)ds
-4 / 0(s — t)e"AP, f(s)ds.

By Minkowski’s and Young’s inequalities, we have

1AL RF(2), La(R)|| < [| Al / 16(t — )4 P_]|| f(s)|ds, Lo(R)]
| Al / 16(s — )= AP, ||| f(s)|ds, L2(R)|
< HAlH/HetAP—HdtHf(S), Ly(R)||
0

0
+lAxll / le* Py||dt]| £(s), L2(R)]l.

Taking into account the estimates [4, 5]:

le P < /2]l All[|Hg |[e=*/ I D,
e~ Py || < \/2l|Al||[Hg|[e= I, ¢ > o,

[A1Rf(8), L2(R)|| < 2HAlH<HHJH 2|l ANl |

+HH0+H\/2HAHHHJH>Hf(S), Ly(R)|-

By condition (4.1), we have estimate (4.6).
According to (4.6), equation (4.5) has a unique solution in the
space Ly(R)

we obtain

ft)=(I - AR)T'F(1)
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for any F'(t) € L2(R). Hence, we constructed the solution of (4.4)
u(t) = R(I — A\R)"'F(t) € W, (R).

Consequently, the matrix A4+ A; has no purely imaginary eigenvalues
and the number of its eigenvalues in the left half-plane C'_ equals the
number of eigenvalues of the matrix A in the left half-plane. O
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