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ABSTRACT: The paper implements a monogenic-Local Binary Pattern (mono-LBP) algorithm on Local 

Gabor Pattern (LGP). The proposed approach initially features from the samples using LGP at different 

scales and orientation. The extracted LGP features are further enhanced by decomposing it into three 

monogenic LBP channels before being recombined to generate the final feature vector. Different 

Normalization schemes are applied to the final feature vector. Two best performing normalization 

algorithms with mono-LBP are fused at score level to obtain an improved performance using K-Nearest 

Neighbor classifier with L1-norm as a distance metrics. Moreover, performance comparison is done with 

other variants of LGP algorithm and also the effects of various normalization techniques are 

investigated. Experimental results from JAFFE and TFEID facial expression databases show that the new 

technique has improved performance compared to its counterparts. 
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Yüz İfade Tanınması İçin Bir Monojenik Yerel Gabor İkili Desen  

 

ÖZ: Bu makale, yerel Gabor Desen (LGP) üzerinde monojenik-Yerel İkili Desen (mono-LBP) 

algoritmasını uygular. Önerilen algoritma Gabor çekirdeğinin farklı ölçeklerinde ve farklı 

normalizasyon şemaları ile uygulanır. Mono-LBP ile en iyi performans gösteren normalleştirme 

algoritmalarından elde edilen sonuçlar, geliştirilmiş bir performans elde etmek için skor düzeyinde 

birleştirilmiştir. Üstelik, performans karşılaştırması diğer LGP algoritmasının türevleri ile yapılmıştır ve 

ayrıca çeşitli normalleştirme tekniklerinin etkileri araştırılmaktadır. JAFFE yüz ifadesi veritabanında 

yapılan deneysel sonuçlarine göre, önerilen yaklaşım bir sınıflandırıcı olarak mesafe metrikini 

kullanarak mevcut algoritmalara kıyasla en iyi ortalama performansa sahip olduğunu göstermektedir. 

 

Anahtar Kelimeler: Yüz ifade tanıma, Yerel gabor desen, Monojenik yerel ikili desen. 

 

INTRODUCTION 

 

Facial Expression Recognition (FER) has recently been one of leading field drawing a lot of interests 

and attentions of the researchers in the field of computer vision and pattern recognition. This may not be 

unconnected to the need for human-machine interaction (HMI), surveillance systems, robotics 

applications and many others (Chao et al., 2015). Quiet a handful number of feature extraction and 

classifier algorithms have been proposed and implemented in this field (FER). Gabor kernel has been 

one of the most robust feature extraction algorithm and widely exploited in FER and face recognition 

due to its ability to approximate receptive fields of simple cells in the primary visual cortex of human 

eyes, multi-resolution approach and direction selectivity (Chao et al., 2015).  
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Following successful implementation of Gabor kernels in iris recognition by 2001 (Doughman, 2001) 

and coupled with the success of local binary pattern (LBP) algorithm, several variants of Gabor 

algorithms emerged over times. These Gabor variants are sometimes referred to as Local Gabor Patterns 

(LGP). LGP algorithms exploit various Gabor feature channels such as magnitude, phase, imaginary and 

real channels. For instance, (Yanxia and Bo, 2010) proposed Local Gabor Binary Patterns (LGBP) which 

encodes Gabor magnitude with LBP operator at different resolution and orientations to form the feature 

vector. The proposed LGBP was reported to have improved performance for face recognition. In (Zhang 

et al., 2010), the authors proposed Local Gabor Phase pattern (LGPP) variants and applied it for face 

recognition. LGPP essentially encodes both real and imaginary parts of the Gabor features using 

Douglas method and then the result is further encoded using what is called Local XOR Pattern (LXP). In 

search for robustness and improved performance, other LGP were proposed such as Histogram of Gabor 

Phase Pattern (HGPP), Local Gabor Phase Difference Pattern (LGPDP) and a host of others which are 

quite relevant to specific problems. In general, these LGP algorithms come with additional cost of 

computation, extensive memory usage and in most cases, feature vector dimensionality reduction 

becomes necessary. 

A rotation invariant monogenic LBP which was proposed for texture classification in (Zhang et al., 

2010) is used in this work. Instead of encoding the Gabor magnitude channels with LBP as is the case in 

(LGBP), we encoded these channels with monogenic LBP which, within the context of this work, is 

referred to mono-LGBP. Furthermore, the results are computed at different resolution (scales) of the 

Gabor kernel under different normalization algorithms. At each scale, results of the proposed method 

with the best two performing normalization technique are fused at the score level to obtain the overall 

performance of the method. 

The paper is divided into five sections. Section I covers the introduction while section II briefly 

discusses Gabor kernel, LBP and M-LBP and normalization schemes. Section III describes the proposed 

approach and section IV presents the experimental results. Section V summarizes the findings. 

 

FEATURE EXTRACTION AND NORMALIZATION SCHEMES 

 

A brief literature background on the feature extraction operators and normalization schemes 

deployed in the course of this work are discussed below.  
 

Gabor Wavelet Transform 
 

Gabor filter is basically a modulation of a Gaussian function with a sinusoidal plane wave. Therefore 

the result of convolution of Gabor kernel, 𝜓𝜃,𝑣(𝑧) with an image, 𝐼(𝑧)  is represented as  𝐺𝜃,𝑣(𝑧)  in Eqn. 

1. 

 

𝐺𝜃,𝑣(𝑧) = 𝐼(𝑧) ∗ 𝜓𝜃,𝑣(𝑧),                      (1) 

 

Here, 𝑧 =  (𝑥, 𝑦) which is the 2D pixel’s index along 𝑥 and 𝑦 plane and operator ‘∗’ is the 2D 

convolution operator. 𝜃 and 𝑣 are the orientation and the scales of the kernel, respectively. The kernel is 

defined as: 

 

𝜓𝜃,𝑣(𝑧) =
‖𝑘𝜃,𝑣‖

𝜎2 𝑒
(−

‖𝑘𝜃,𝑣‖
2

‖𝑧‖2

2𝜎2 )

[𝑒−𝑖𝑘𝜃,𝑣𝑧 − 𝑒−𝜎2

2⁄ ]                (2) 

  

where  ‖. ‖ is the norm operator and 𝜎 is the standard deviation of the distribution. The vector 𝑘𝜃,𝑣  is 

defined as: 

 

𝑘𝜃,𝑣 = 𝑘𝑣𝑒−𝑖𝜙𝜃                                                              (3)  



  416 A. ELEYAN, A. M. ASHIR 

 

where 𝑘𝑣 = 𝑘𝑚𝑎𝑥/𝑓𝑣 and  𝜙𝜃 = 𝜋𝜃/8 ; 𝑘𝑚𝑎𝑥 is the maximum frequency, 𝜙𝜃 is the kernel’s orientation 

and 𝑓  is the spacing between the kernels in the frequency domain (Eleyan et al., 2008; Liu and Wechsler, 

2003; Lyon et al., 1998; Cootes et al., 1995). 

 

Local Binary Pattern 

 

Due to its relative simplicity, LBP has been applied successfully in many applications. The algorithm 

uses 3 × 3 windows of neighborhood pixels in the image to determine the new value of a pixel being 

considered (Ahonen et al., 2006; Ojala et al., 2010, Tran et al., 2014). Consider Figure 1, initially, the 

algorithms probes the 8-neighbood pixels around pixel 𝑧. Any pixel greater than 𝑧 is assigned a binary 

bit value 1 otherwise, assigned bit value 0. An 8-bit code is generated and is converted to decimal and 

recorded as the new value for 𝑧. The operation is applied to all the pixels in the image. 
 

 

 

 

 

Figure 1.   LBP operator 

 

The LBP code for pixel 𝑧 can be computed by arranging the results of the operation starting from  

top-left corner clockwise is ‘01011000’ which is equivalent to 152 in decimal. 

 

Local Binary XOR Operator 
 

LXP is very similar to LBP except that it applies XOR to  3 × 3  pixels neighborhood to decide the 

new value of a pixel. Due to the fact that it applies XOR operator the pixels values must be converted to 

zeros and ones before being applied (Zhang et al., 2007). For instance results from an image convolved 

with Gabor kernel may be formatted to logical by deciding that any value greater than zero is assigned a 

logical zeros while those with zeros and below are assigned logical ones. Figure 2 shows how LXP is 

applied to the logically formatted image. For the new value of 𝑧 is to be determined, all the 8-

neighborhood pixels are XOR-ed with 𝑧 and the resulting 8 bit codes are converted to decimal. 

 

 

 

 

 

 

 

 

 

Figure 2.  LXP operator 

 

For instance, in the figure above the new LXP code for pixel 𝑧 starting  from top-left corner clockwise 

is ‘00111011’ which is equivalent to 115 in decimal. 
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Monogenic Local Binary Pattern 

 

The motivation for this algorithm comes from the monogenic signal theory. It combines the local 

phase information, the local surface type information, and the traditional LBP to improve the 

performance of LBP in texture classification (Zhang et al., 2010). Based on this theory, three features are 

combined together to form monogenic 3-D texton feature vector to determine monogenic LBP. These 

features are; phase, 𝜑𝑐 , rotation invariant uniform pattern LBP, LBPriu2 and the monogenic curvature 

tensor Sc based on higher order Riesz transforms. Eqn. 4-6 describe these features. For more details refer 

to (Zhang et al., 2010). 
 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 = {

∑ 𝑠(𝑔𝑝
𝑝
𝑝=0 − 𝑓𝑐)  𝑖𝑓 𝑈(𝐿𝐵𝑃𝑝,𝑟) ≤ 2,

𝑃 + 1,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                (4) 

 

where;  

 

 𝑈(𝐿𝐵𝑃𝑝,𝑟) = |𝑠(𝑔𝑝−1 − 𝑔𝑐) − 𝑠(𝑔𝑜 − 𝑔𝑐)| + ∑ |𝑠(𝑔𝑝 − 𝑔𝑐) − 𝑠(𝑔𝑝−1 − 𝑔𝑐)|𝑃−1
𝑝=1              (5) 

 

Superscript “riu2” means the use of rotation invariant “uniform” patterns that have 𝑈 value of at 

most 2; s is the sign function; 𝑔𝑐 corresponds to the gray value of the center pixel of the local 

neighborhood and 𝑔𝑝 (𝑝 =  0, … , 𝑃 − 1) correspond to the gray values of 𝑃 equally spaced pixels on a 

circle of radius 𝑅. 

 

Phase 𝜑𝑐 , is defined as ; 

 

𝜑𝑐 =
𝜑

(𝜋
𝑀⁄ )⁄  ,                             (6)                   

 

where 𝑀 = 5. 

 

The last parameter 𝑆𝑐 is defined by:  

 

𝑆𝑐 = {
0, det (𝑇𝑒) ≤ 0

1, 𝑒𝑙𝑠𝑒
 ,                                                                       (7) 

   

where det(𝑇𝑒) is the determinant of the monogenic curvature tensor. 

 

Normalization Operators 

 

Normalization techniques are quite often being used without much regards to the effect they can 

have on the general statistical distribution of the vectors to be normalized (Ribaric and Fratric, 2006; 

Nandakumar et al., 2005). For instance, in fusion of the score levels of various classifiers, a normalization 

scheme can be deployed to bring the scores within the same range. But in a vector sense, the 

normalization algorithm is more of a vector transform from one vector space to another. Hence the 

choice for a compatible normalizer becomes important as this may distort the vectors there by 

improving or decreasing the class separability between two distinct class vectors. Due to this fact, we 

investigated some of the most common normalization techniques to show how they affect class vectors 

distribution. Four normalization techniques are examined in this paper. 
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Z-Score Normalization 

 

It is one of the most common normalization schemes. It uses the arithmetic mean and standard 

deviation of the vector. Z-score has a record of good performance on a set of data with Gaussian 

distribution. However, it is not robust due to the fact that it depends on the mean and standard 

deviation of the data which are both sensitive to outliers (Ribaric and Fratric, 2006). For a data point  𝑆𝑘 ,  

Z-score computes the new normalized value 𝑆𝑘
′ , using Eqn. 8. 

 

𝑆𝑘
′ =

𝑆𝑘−𝜇

𝜎
 ,                      (8) 

 

where 𝜇 and 𝜎 are the mean and standard deviation of the distribution respectively. 

 

Min-Max Normalization 

 

Is one of the simplest of all the normalization techniques. This operator shifts the data sets within an 

interval [0, 1]. It can easily be seen that this technique is also not robust because presence of outliers in 

the distribution may affect the contribution of the majority datasets. Eqn. 9 defines min-max operator. 

 

𝑆𝑘
′ =

𝑆𝑘−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
,                     (9) 

 

where 𝑚𝑎𝑥 is the maximum data value of the distribution, and 𝑚𝑖𝑛 is the minimum data value of 

the distribution. 

 

Median-MAD Normalization 

 

The median and median absolute deviated as abbreviated (Median-MAD), are less sensitive to 

outliers and points at the extreme ends of the distribution. Therefore, this technique is robust. However, 

for distributions other than Gaussian, median and MAD are poor estimates of the location and the scales 

parameters (Ribaric and Fratric, 2006; Sigdel et al., 2014, Nandakumar et al., 2005). Therefore, the scheme 

does not preserve the original distribution and does not transform the datasets into a common numerical 

range (Ribaric and Fratric, 2006). The equation below defines the median-MAD operation. 

 

𝑆𝑘
′ =

𝑆𝑘−𝑚𝑒𝑑𝑖𝑎𝑛

𝑀𝐴𝐷
,                                                                                    (10) 

 

where median is the median of the distribution and MAD is the median of the absolute deviation 

from the median defined as 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑆𝑘 − 𝑚𝑒𝑑𝑖𝑎𝑛|). 

 

Tangent-hyperbolic (Tanh) Normalization 

 

Tanh normalization has been successfully used in many normalization schemes (Nandakumar et al., 

2005). The tanh estimator is robust and very efficient. It is defined as; 

 

𝑆𝑘
′ =

1

2
{tanh (0.01 (

𝑆𝑘−𝜇𝐺𝐻

𝜎𝐺𝐻
)) + 1} ,                                                                                 (11) 

 

where 𝜇𝐺𝐻 and 𝜎𝐺𝐻 are the mean and standard deviation estimates, respectively. 

Quite a number of normalization schemes do exist, for example Decimal Scaling normalization 

which is useful for data in logarithmic scales and Euclidean normalization. The ability of particular 

normalization algorithm to capture statistical distribution of a dataset will make it worthwhile. 
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PROPOSED APPROACH 

 

The proposed approach has both encompasses the critical stages of a facial expression algorithms. 

Initially During feature extraction, the proposed approach extract Gabor features from each sample 

using different orientation (i.e.  𝜃 = 8) and scale (1 to 3) of the Gabor filter. For each Local Gabor features 

extracted at a specified orientation and scale, monogenic LBP is further applied to the extracted Gabor 

Features using equations (4, 6 and 7). The three monogenic LBP features (𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2, 𝜑𝑐 , 𝑎𝑛𝑑 𝑆𝑐)  are 

combined together to form a single monogenic 3-D texton feature vector. The monogenic 3-D texton 

feature vector is adopted as the final feature vector known as the mono-LGBP algorithm in the context of 

this work. 

 Moreover, as a way of exploiting performance, a normalization scheme is applied at the feature 

level of the proposed approach. Hence different normalization approaches are applied to the mono-

LGBP feature vector before classification. Four different normalization techniques are investigated as 

explained in chapter 3.  

In the classification stage, KNN has being used with l2-norm as the distance measure. Each Euclidean 

representation of mono-LGBP feature with different normalization algorithm is classified separately 

using KNN. Based on the performance of the normalization representation of the mono-LGBP feature, 

two of the best normalization schemes are fused at score level of the classifier using a simple sum rule to 

obtain a better performance. Figure depicts the flowchart of the proposed approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Proposed approach Flowchart 

 

EXPERIMENTAL RESULTS  

 

The proposed algorithm is implemented using two different facial expression databases which 

include Japanese Female Facial Expression JAFFE (Lyon et. al 1998) and Taiwanese Facial Expression 

Image Database TFEID (Chen and Yen, 2007). JAFFE database contains a total of 213 samples images of 

seven basic facial expressions (i.e. Neutral, Happy, Sad, Surprise, Anger Disgust and Fear) collected 

from 10 different subjects. The number of samples per expression in each subject ranges from 2 to 4.  

While the current public TFEID database consist of facial images from 20 male models each acquired 
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with a frontal view between 0𝑜 to 45𝑜. It constitutes 8 expressions with contempt as the eighth expression 

in addition to the seven basic expressions found in JAFFE.  

During training all the sample images were grouped into emotions classes (i.e. 7 for JAFFE and 8 for 

TFEID) irrespective of subjects to which they belong to (i.e. person-independent). Using Leave-One-

Pose-Out (LOPO) procedures, one sample is drawn from each class for training while the remaining 

samples are used for training. This process is repeated and rotated until each sample is uniquely use as a 

training set. The overall performance is given as the average performance of the entire number of times 

the training is repeated. 

Table 1 to 6 display the experimental results from the proposed approach in comparison to its 

counterparts. Results from different normalizations schemes and three other variants of LGP algorithms 

(Gabor-magnitude features, LGBP and LGPP) were implemented to compare the results with the 

proposed approach for the two database used. The same experimental procedures were adopted in 

throughout the experiments. Similarly, results from the fusion of the proposed mono-LGBP were also 

included to show the leverages of the fusion techniques over the non-fusion approach. Figure 4 shows 

training samples from JAFFE database of four different subjects with 7 basic facial expressions (e.g. 

Neutral, Happy, Sad, Surprise, Anger, Disgust and Fear) from left to right, respectively.  

 

 
Figure 4. Examples of images from the JAFFE Database 

 

Results Discussion 

 

It is worth noting that the proposed mono-LGBP algorithm performance increases with the increase 

of Gabor scales (see Tables 1-6).  The fused results from Z-score and Tanh normalization algorithms 

gives a better performance. This is because in mono-LGBP, each of the two normalization schemes has 

been able to uniquely recognize some poses which are not being recognize by the other. Hence, the 

fusion of these results will lead to improving performance. The same cannot be said for the other LGP. 

For example, Gabor-magnitude (Gabor-mag) has the best result with all the Z-score, Tanh and min-max 

normalizations but unfortunately, they all pointed at the same recognition classes. Therefore fusing their 

results does not improve the performance. The same for LGPP and LGBP.  

       

Table 1.  Experimental Results at one scale (𝜃 = 8, 𝑣 = 1) using JAFFE Database. 

Feature Extractors non Z-score min-max M-MAD tanh 

LGP-Magnitude 88.6 90.0 88.6 90.0 90.0 

LGPP 67.1 68.6 67.1 67.1 70.0 

LGBP 34.3 40.0 34.3 40.0 50.0 

mono-LGBP 64.3 64.3 57.1 57.1 67.1 

Fused mono-LGBP Z-Score+tanh = 77.14 
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Table 2.  Experimental Results at two scales (𝜃 = 8, 𝑣 = 2)using JAFFE Database. 

Feature Extractors non Z-score min-max M-MAD tanh 

LGP-Magnitude 90        91.4 91.4          90.0         91.4 

LGPP 77.1      78.6         77.1           77.1        78.6 

LGBP 50.0      50.0          40.0           50.0        77.1 

mono-LGBP 80.0      80.0          74.3          71.4         80.0 

Fused mono-LGBP Z-Score+tanh = 84.29 

 

Table 3.  Experimental Results at three scales (𝜃 = 8, 𝑣 = 3) using JAFFE Database. 

Feature Extractors non Z-score min-max M-MAD tanh 

LGP-Magnitude 90        91.4          91.4          90 91.4 

LGPP 77.1     82.1          80.1         77.1       85.7 

LGBP 71.4     71.4          60.0         71.4        80.1 

mono-LGBP 87.1     91.4          82.9           90       91.4 

Fused mono-LGBP Z-Score+tanh = 92.83 

 

Table 4.  Experimental Results at one scale (𝜃 = 8, 𝑣 = 1) using TFEID Database. 

Feature Extractors non Z-score min-max M-MAD tanh 

LGP-Magnitude 87.6 92.1 90.4 93.0 93.3 

LGPP 70.1 73.6 69.1 70.1 75.5 

LGBP 50.3 59.0 49.3 52.0 65.0 

mono-LGBP 64.3 68.3 59.6 60.8 73.4 

Fused mono-LGBP Z-Score+tanh = 82.15 

 

Table 5.  Experimental Results at two scales (𝜃 = 8, 𝑣 = 2) using TFEID Database. 

Feature Extractors non Z-score min-max M-MAD tanh 

LGP-Magnitude 90.6        94.4 92.6          91.0         94.4 

LGPP 80.3      84.6         80.9          81.1        83.9 

LGBP 60.0      60.9          50.2           60.4        87.1 

mono-LGBP 90.0      92.0          82.3          90.4         96.0 

Fused mono-LGBP Z-Score+tanh = 96.29 

 

Table 6.  Experimental Results at three scales (𝜃 = 8, 𝑣 = 3) using TFEID Database. 

Feature Extractors non Z-score min-max M-MAD tanh 

LGP-Magnitude 89.2        90.5         91.4          93.3 92.4 

LGPP 77.1     82.1          80.1         77.1       85.7 

LGBP 71.4     71.4          60.0         71.4        80.1 

mono-LGBP 91.1     96.4          92.9           94.5       97.4 

Fused mono-LGBP Z-Score+tanh = 97.9 

 

CONCLUSION 

 

A new approach for facial expression recognition was proposed and implemented. The performance 

of the proposed approach was compared with the existing LGP algorithms using different normalization 

schemes. The new approach was able to achieve better performance approximately 92.8% with JAFFE 
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database and 97.9% with TFEID database. The results are comparable to the best-known results of facial 

expression recognition on JAFFE database and TFEID in the literature using KNN as a classifier. The 

normalization schemes further indicate that a great deal of performance can be realized with a proper 

application of normalization algorithm to extracted feature vectors. The results also confirmed the 

effectiveness of the fusion technique deployed in the proposed approach. 
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