Approximate Solution of the Double Nonlinear Singular Integral Equations with Hilbert Kernel by the Method of Contractive Mappings

Nushaba F. Gasimova
Ministry of Education of Azerbaijan Republic, Khatai(Xatai) prospect, 49, AZ 1008, Azerbaijan
e-mail: enusabe@yahoo.com

Received Date: September 7, 2010
Accepted Date: March 8, 2011

Abstract

In this paper the double nonlinear singular integral equations with Hilbert kernel are solved by contractive mappings method and the rate of convergence of sequential approximations to exact solution is found.

Key words: Approximate solution; Singular integral equations; Bicylindrical domain; Superposition; Cfontractive mappings
2000 Mathematics Subject Classification: 45G05.

1. Introduction

Some notations and auxiliary facts
Let's consider the following double nonlinear singular integral equation (NSIE) of the form

$$
\begin{equation*}
\varphi(x, y)=\lambda \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F[s, t, \varphi(s, t)] \operatorname{ctg} \frac{s-x}{2} \operatorname{ctg} \frac{t-y}{2} d s d t+f(x, y) \tag{1.1}
\end{equation*}
$$

where λ is a real parameter, F and f are the given functions, φ is the desired function. Equations of the form (1.1) are met by studying limit values on the frames of bicylinder of the function which is analytic in bicylindrical domain [1] and the theory of singular integral equations [2]. In this paper we'll solve equation (1.1) by the contractive mappings method.
By $C\left(T^{2}\right)$ we denote a space of continuous functions on $T^{2}=[-\pi, \pi] \times[-\pi, \pi]$ and have 2π periodic by each of variables with the norm

$$
\begin{equation*}
\|f\|_{C\left(T^{2}\right)}=\max _{(x, y) \in T^{2}}|f(x, y)| . \tag{1.2}
\end{equation*}
$$

Let

$$
\triangle_{h}^{1,0} f(x, y)=f(x+h, y)-f(x, y), \quad \triangle_{\eta}^{0,1} f(x, y)=f(x, y+\eta)-f(x, y)
$$

$$
\begin{equation*}
\triangle_{h, \eta}^{1,1} f(x, y)=f(x, y)-f(x+h, y)-f(x, y+\eta)+f(x+h, y+\eta) \tag{1.3}
\end{equation*}
$$

These quantities are called partial difference with respect to x with step h, with respect to c with step η and mixed difference in aggregate of variables with step h and η at the point (x, y).
Introduce the denotation:

$$
\begin{gathered}
\omega_{f}^{1,0}(\delta)=\sup _{|h| \leq \delta}\left\|\triangle_{h}^{1,0} f(x, y)\right\|_{C\left(T^{2}\right)}, \quad \omega_{f}^{0,1}(\eta)=\sup _{|h| \leq \eta}\left\|\triangle_{h}^{0,1} f(x, y)\right\|_{C\left(T^{2}\right)}, \\
\text { 4) } \begin{array}{c}
\omega_{f}^{1,1}(\delta, \eta)=\sup ^{\left|h_{1}\right| \leq \delta} \begin{array}{c}
\left|h_{2}\right| \leq \eta
\end{array}
\end{array} . \begin{array}{c}
1,1 \\
h_{1}, h_{2}
\end{array} f(x, y) \|_{C\left(T^{2}\right)} .
\end{gathered}
$$

By means of these characteristics in the paper [3] we introduce the space

$$
\begin{array}{r}
K_{\alpha, \beta}^{1,1}=\left\{f \in C\left(T^{2}\right) \mid \omega_{f}^{1,0}(\delta)=O\left(\delta^{\alpha}\right), \omega_{f}^{0,1}(\eta)=O\left(\eta^{\beta}\right), \omega_{f}^{1,1}(\delta, \eta)=O\left(\delta^{\alpha} \cdot \eta^{\beta}\right)\right\} \\
0<\alpha, \beta \leq 1
\end{array}
$$

with finite norm

$$
\|f\|_{K_{\alpha, \beta}^{1,1}}=\max \left\{\|f\|_{C\left(T^{2}\right)}, \sup _{\delta>0} \frac{\omega_{f}^{1,0}(\delta)}{\delta^{\alpha}}, \sup _{\eta>0} \frac{\omega_{f}^{0,1}(\eta)}{\eta^{\beta}}, \sup _{\substack{\delta>0 \\ \eta>0}} \frac{\omega_{f}^{1,1}(\delta)}{\delta^{\alpha} \cdot \eta^{\beta}}\right\}
$$

and prove that the spaces $K_{\alpha, \beta}^{1,1}$ is a Banach space.
Let $f \in C\left(T^{2}\right)$. Let's consider a double singular integral with Hilbert kernel

$$
\begin{equation*}
\tilde{f}(x, y)=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(s, t) \operatorname{ctg} \frac{s-x}{2} \operatorname{ctg} \frac{t-y}{2} d s d t \tag{1.6}
\end{equation*}
$$

Note that integral (1.6) is understood in the sense of Cauchy's principal value. From the estimates obtained in the papers [3], [4] it follows that the singular operator (SO)

$$
\begin{equation*}
(S f)(x, y)=\tilde{f}(x, y) \tag{1.7}
\end{equation*}
$$

Acts from $K_{\alpha, \beta}^{1,1}$ to $K_{\alpha, \beta}^{1,1}$ and bounded for $0<\alpha, \beta<1$.

In the space $K_{\alpha, \beta}^{1,1}$ we take a ball with center at zero of radius R

$$
B_{\alpha, \beta}^{1,1}(R)=\left\{\varphi \in K_{\alpha, \beta}^{1,1} \mid\|\varphi\|_{K_{\alpha, \beta}^{1,1}} \leq R\right\} .
$$

The following statement was proved in the paper [5].
Statement 1. Let $f \in K_{\alpha, \beta}^{1,1}$ and $1 \leq p<\infty$. Then the inequality

$$
\begin{equation*}
\|f\|_{C\left(T^{2}\right)} \leq l\|f\|_{K_{\alpha, \beta}^{1,1}}^{\gamma} \cdot\|f\|_{L_{p}}^{1-\gamma} \tag{1.8}
\end{equation*}
$$

where $\gamma=\frac{1+p(\alpha+\beta)}{(1+\alpha p)(1+\beta p)}$,

$$
\begin{equation*}
l=\max \left\{\frac{(1+\alpha p)(1+\beta p)}{(\alpha \beta p)^{1-\gamma}}, \frac{\sqrt[p]{4}(1+\alpha p)(1+\beta p)}{\alpha \beta p \pi^{1-\gamma}}\right\} \tag{1.9}
\end{equation*}
$$

is true.
Later on we'll need the following statements proved in [10].
Statement 2. Let the function $F(x, y, \varphi): T^{2} \times[-R, R] \rightarrow \Re$ satisfy the conditions:

1) there exists a partial derivative $F_{\varphi}^{\prime}(x, y, \varphi)$ and there is $C_{0}>0$ such that for $\forall \varphi_{1}, \varphi_{2} \in[-R, R]\left|F_{\varphi}^{\prime}\left(x, y, \varphi_{1}\right)-F_{\varphi}^{\prime}\left(x, y, \varphi_{2}\right)\right| \leq C_{0}\left|\varphi_{1}-\varphi_{2}\right|$;
2) $\exists C_{1}>0, \forall x_{1}, x_{2} \in[-\pi, \pi]\left|F\left(x_{1}, y, \varphi\right)-F\left(x_{2}, y, \varphi\right)\right| \leq C_{1}\left|x_{1}-x_{2}\right|^{\alpha}$;
3) $\exists C_{2}>0, \forall y_{1}, y_{2} \in[-\pi, \pi]\left|F\left(x, y_{1}, \varphi\right)-F\left(x, y_{2}, \varphi\right)\right| \leq C_{2}\left|y_{1}-y_{2}\right|^{\beta}$;
4) $\exists C_{3}>0, \forall x_{1}, y_{1}, x_{2}, y_{2} \in[-\pi, \pi]$
$\left|F\left(x_{1}, y_{1}, \varphi\right)-F\left(x_{1}, y_{2}, \varphi\right)-F\left(x_{2}, y_{1}, \varphi\right)+F\left(x_{2}, y_{2}, \varphi\right)\right| \leq C_{3}\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta} ;$
5) $\exists C_{4}>0, \forall x_{1}, x_{2} \in[-\pi, \pi], \forall \varphi_{1}, \varphi_{2} \in[-R, R]$
$\left|F\left(x_{1}, y, \varphi_{1}\right)-F\left(x_{1}, y, \varphi_{2}\right)-F\left(x_{2}, y, \varphi_{1}\right)+F\left(x_{2}, y, \varphi_{2}\right)\right| \leq C_{4}\left|x_{1}-x_{2}\right|^{\alpha}\left|\varphi_{1}-\varphi_{2}\right| ;$
6) $\exists C_{5}>0, \forall y_{1}, y_{2} \in[-\pi, \pi], \forall \varphi_{1}, \varphi_{2} \in[-R, R]$
$\left|F\left(x, y_{1}, \varphi_{1}\right)-F\left(x, y_{1}, \varphi_{2}\right)-F\left(x, y_{2}, \varphi_{1}\right)+F\left(x, y_{2}, \varphi_{2}\right)\right| \leq C_{5}\left|y_{1}-y_{2}\right|^{\beta}\left|\varphi_{1}-\varphi_{2}\right|$.
Then the operator of superposition $F: \varphi(x, y) \rightarrow F[x, y, \varphi(x, y)]$ acts from the ball $B_{\alpha, \beta}^{1,1}(R)$ to the ball $B_{\alpha, \beta}^{1,1}\left(R_{1}\right)$ where radius R_{1} is uniquely determined by initial data.

Statement 3. Let the function $F(s, t, \varphi): T^{2} \times[-R, R] \rightarrow \Re$ satisfy conditions $1)-6)$ and $f \in B_{\alpha, \beta}^{1,1}\left(R^{\prime}\right)\left(R^{\prime}<R\right)$.
Then for

$$
\begin{equation*}
\lambda<\min \left\{\frac{1}{C^{*}\|S\|_{L_{2} \rightarrow L_{2}}}, \frac{R-R^{\prime}}{R_{1} \cdot\|S\|_{K_{\alpha, \beta}^{1,1} \rightarrow K_{\alpha, \beta}^{1,1}}}\right\} \tag{1.10}
\end{equation*}
$$

where $C^{*}=\max _{x, y, \varphi}\left|F_{\varphi}^{\prime}(x, y, \varphi)\right|$, the operator

$$
\begin{equation*}
(L \varphi)(x, y)=\lambda \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F[s, t, \varphi(s, t)] \operatorname{ctg} \frac{s-x}{2} \operatorname{ctg} \frac{t-y}{2} d s d t+f(x, y) \tag{1.11}
\end{equation*}
$$

Is a contractive map in the ball $B_{\alpha, \beta}^{1,1}(R)$ in the metric of the space $L_{2}\left(T^{2}\right)$.

2. Approximate Solution of NSIE (1.1)

From estimate (1.8) it follows that if a sequence of functions $\left\{f_{n}\right\} \subset B_{\alpha, \beta}^{1,1}(R)$ converges in the metric of the space $L_{2}\left(T^{2}\right)$ to some function f_{0}, it converges to f_{0} in the metric of the space $C\left(T^{2}\right)$ as well.

It is valid.
Lemma 2.1. If the sequence $\left\{f_{u}\right\} \subset B_{\alpha, \beta}^{1,1}(R)$ converges in the metric of space $C\left(T^{2}\right)$ to f_{0}, then $f_{0} \in B_{\alpha, \beta}^{1,1}(R)$.

Proof. $f_{n} \rightarrow f_{0} f_{n} \in B_{\alpha, \beta}^{1,1}(R)$. Then

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists N(\varepsilon) \quad \forall n>N(\varepsilon), \forall(x, y) \in T^{2}\left|f_{n}(x, y)-f(x, y)\right|<\varepsilon \tag{2.1}
\end{equation*}
$$

Let's take arbitrary points $\left(x_{1}, y\right),\left(x_{2}, y\right) \in T^{2}$ and arbitrary $\varepsilon_{0}>0$ and fix them. Take such $\varepsilon>0$ that the inequality $\frac{\varepsilon}{\left|x_{1}-x_{2}\right|^{\alpha}}<\varepsilon_{0}$ be fulfilled. Then we have

$$
\begin{align*}
& \frac{\left|f_{0}\left(x_{1}, y\right)-f_{0}\left(x_{2}, y\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}=\frac{\left|f_{0}\left(x_{1}, y\right)-f_{n}\left(x_{1}, y\right)+f_{n}\left(x_{1}, y\right)-f_{n}\left(x_{2}, y\right)+f_{n}\left(x_{2}, y\right)-f_{0}\left(x_{2}, y\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}} \\
& \leq \frac{\left|f_{0}\left(x_{1}, y\right)-f_{n}\left(x_{1}, y\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}+\frac{\left|f_{n}\left(x_{1}, y\right)-f_{n}\left(x_{2}, y\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}+\frac{\left|f_{n}\left(x_{2}, y\right)-f_{0}\left(x_{2}, y\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}<2 \varepsilon_{0}+R . \tag{2.2}
\end{align*}
$$

The relation

$$
\begin{equation*}
\frac{f_{0}\left(x, y_{1}\right)-f_{0}\left(x, y_{2}\right)}{\left|y_{1}-y_{2}\right|^{\beta}}<2 \varepsilon_{0}+R \tag{2.3}
\end{equation*}
$$

is proved similarly. Now, let's fix the points $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ T^{2} and $\varepsilon_{0}>0$. Take such $\varepsilon>0$ that the relation $\frac{\varepsilon}{\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta}}<\varepsilon_{0}$ be fulfilled.
Then

$$
\begin{array}{r}
\frac{\left|f_{0}\left(x_{1}, y_{1}\right)-f_{0}\left(x_{1}, y_{2}\right)-f_{0}\left(x_{2}, y_{1}\right)+f_{0}\left(x_{2}, y_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta}}=\left(\mid f_{0}\left(x_{1}, y_{1}\right)-f_{n}\left(x_{1}, y_{1}\right)\right. \\
+f_{n}\left(x_{1}, y_{1}\right)-f_{0}\left(x_{1}, y_{2}\right)+f_{n}\left(x_{1}, y_{2}\right)-f_{n}\left(x_{1}, y_{2}\right) \\
\quad-f_{0}\left(x_{2}, y_{1}\right)+f_{n}\left(x_{2}, y_{1}\right)-f_{n}\left(x_{2}, y_{1}\right)+f_{0}\left(x_{2}, y_{2}\right) \\
\left.\quad-f_{n}\left(x_{2}, y_{2}\right)+f_{n}\left(x_{2}, y_{2}\right) \mid\right) /\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta} \tag{2.4}\\
\leq \frac{\left|f_{0}\left(x_{1}, y_{1}\right)-f_{n}\left(x_{1}, y_{1}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta}}+\frac{\left|f_{0}\left(x_{1}, y_{2}\right)-f_{n}\left(x_{1}, y_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta}}+\frac{\left|f_{0}\left(x_{2}, y_{1}\right)-f_{n}\left(x_{2}, y_{1}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha} \mid y_{1}-y_{2} \beta^{\beta}} \\
+\frac{\left|f_{0}\left(x_{2}, y_{2}\right)-f_{n}\left(x_{2}, y_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta}}+\frac{\left|f_{n}\left(x_{1}, y_{1}\right)-f_{n}\left(x_{1}, y_{2}\right)-f_{n}\left(x_{2}, y_{1}\right)+f_{n}\left(x_{2}, y_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}\left|y_{1}-y_{2}\right|^{\beta}} \\
<4 \varepsilon_{0}+R
\end{array}
$$

It follows from estimates $(2.2)-(2.4)$ that $f_{0} \in B_{\alpha, \beta}^{1,1}(R+4 \varepsilon)$. Since $\varepsilon_{0}>0$ is arbitrary, we get $f_{0} \in B_{\alpha, \beta}^{1,1}(R)$. The lemma is proved.

Now, let's prove the main theorem:
Theorem 2.1. Let the function $F(s, t, \varphi): T^{2} \times[-R, R] \rightarrow \Re$ satisfy conditions 1) - 6) and $f \in B_{\alpha, \beta}^{1,1}\left(R^{\prime}\right)\left(R^{\prime}<R\right)$. Then for

$$
|\lambda|<\min \left\{\frac{1}{C^{*}\|S\|_{L_{2}\left(T^{2}\right)}}, \frac{R-R^{\prime}}{R_{1}\|S\|_{K_{\alpha, \beta}^{1,1} \rightarrow K_{\alpha, \beta}^{1,1}}}\right\}
$$

NSIE (1.1) has a unique solution φ^{*} in the ball $B_{\alpha, \beta}^{1,1}(R)$ and sequential approximations $\varphi_{n}=L \varphi_{n-1}$ converge to this solution in the metric $C\left(T^{2}\right)$ with rate

$$
\left\|\varphi_{n}-\varphi^{*}\right\|_{C\left(T^{2}\right)} \leq M \cdot \omega^{n}\left\|\varphi_{1}-\varphi_{0}\right\|_{L_{2}\left(T^{2}\right)}^{\frac{\gamma}{1+\gamma}}
$$

where M is a constant,

$$
\omega=\left\{|\lambda| C^{*}\|S\|_{L_{2}\left(T^{2}\right)}\right\}^{\frac{\gamma}{1+\gamma}}, \quad \gamma=\min \{\alpha, \beta\} .
$$

Proof. Under the conditions of the theorem L is contractive map in the metric $L_{2}\left(T^{2}\right)$. Then by contractive mappings principle we get

$$
\begin{equation*}
\left\|\varphi_{n}-\varphi^{*}\right\|_{L_{2}(T 2)} \leq \frac{1}{1-\omega_{0}} \omega_{0}^{n}\left\|\varphi_{1}-\varphi_{0}\right\|_{L_{2}\left(T^{2}\right)}, \text { where } \omega_{0}=|\lambda| C^{*}\|S\|_{L_{2}\left(T^{2}\right)} \tag{2.6}
\end{equation*}
$$

Estimate the norm $\left\|\varphi_{n}-\varphi^{*}\right\|_{C_{2}\left(T^{2}\right)}$ by the norm $\left\|\varphi_{n}-\varphi^{*}\right\|_{L_{2}\left(T^{2}\right)}$. By $B((x, y) ; h)$ we denote a circle of radius $h>0$ and center at the point $(x, y) \in T^{2}$. Later on, let $V_{2}=V_{2}^{h}(x, y)=T^{2} \cap B((x, y) ; h)$. It is clear that for the function $g \in C\left(T^{2}\right)$ it holds the representation [9]:
$g(x, y)=\frac{1}{\operatorname{mes} V_{2}} \int_{V_{2}} \int g(s, t) d s d t-\frac{1}{\operatorname{mes} V_{2}} \int_{V_{2}} \int[g(s, t)-g(x, y)] d s d t$
Having taken $g(x, y)=\varphi^{*}(x, y)-\varphi_{n}(x, y)$ we get:

$$
\begin{align*}
& \varphi^{*}(x, y)-\varphi_{n}(x, y)=\frac{1}{m e s V_{2}} \int_{V_{2}} \int\left[\varphi^{*}(s, t)-\varphi_{n}(s, t)\right] d s d t \\
& -\frac{1}{m e s V_{2}} \int_{V_{2}} \int\left[\varphi^{*}(s, t)-\varphi^{*}(x, y)-\varphi_{n}(s, t)+\varphi_{n}(x, y)\right] d s d t \tag{2.7}
\end{align*}
$$

Since $\varphi^{*} \varphi_{n} \in B_{\alpha, \beta}^{1,1}(R)$, we have

$$
\begin{aligned}
& \left|\varphi^{*}(s, t)-\varphi^{*}(x, y)-\varphi_{n}(s, t)+\varphi_{n}(x, y)\right| \leq \\
& \leq\left|\varphi^{*}(s, t)-\varphi^{*}(s, y)-\varphi^{*}(x, t)+\varphi^{*}(x, y)\right| \\
& \quad+\left|\varphi^{*}(s, y)-\varphi^{*}(x, y)\right|+\left|\varphi^{*}(x, t)-\varphi^{*}(x, y)\right| \\
& \quad-\left|\varphi_{n}(s, t)+\varphi_{n}(s, y)-\varphi_{n}(x, t)+\varphi_{n}(x, y)\right| \\
& \quad \quad+\left|\varphi_{n}(s, y)-\varphi_{n}(x, y)\right|+\left|\varphi_{n}(x, y)-\varphi_{n}(x, y)\right| \\
& \leq 2 M_{1}\left(|s-x|^{\alpha}|t-y|^{\beta}+|s-x|^{\alpha}+|t-y|^{\beta}\right) \leq 2 M_{2} h^{\gamma} .
\end{aligned}
$$

And here M_{2} is a constant and $\gamma=\min \{\alpha, \beta\}$. Then it follows from (2.7) that

$$
\begin{equation*}
\left|\varphi^{*}(x, y)-\varphi_{n}(x, y)\right| \leq \frac{1}{\sqrt{m e s V_{2}}} A_{n}+M_{2} h^{\gamma} \leq M_{3} h^{-1} A_{n}+M_{2} h^{\gamma} \tag{2.8}
\end{equation*}
$$

where $A n=\left\|\varphi_{n}-\varphi^{*}\right\|_{L_{2}\left(T^{2}\right)}$.
If we take $h=A_{n}^{\frac{1}{1+\gamma}}$, we have from (2.8)

$$
\begin{array}{r}
\left|\varphi^{*}(x, y)-\varphi_{n}(x, y)\right| \leq M_{4} A_{n}^{\frac{\gamma}{1+\gamma}}=M_{4}\left\|\varphi_{n}-\varphi^{*}\right\|_{L_{2}\left(T^{2}\right)}^{\frac{\gamma}{1+\gamma}} \Rightarrow \\
\Rightarrow\left|\varphi^{*}-\varphi_{n}\right|_{C\left(T^{2}\right)} \leq M_{4}\left\|\varphi_{n}-\varphi^{*}\right\|_{L_{2}\left(T^{2}\right)}^{\frac{\gamma}{1+\gamma}}
\end{array}
$$

Taking into account the last inequality and taking $M=M_{4}\left(\frac{1}{1-\omega_{0}}\right)^{\frac{\gamma}{1+\gamma}}$ we get the affirmation of the theorem.
The theorem is proved.

References

1. Kakichev V.A., Schwartz integral and Hilbert formula for analytical functions of many complex variables, Izv. Vuzov. matem., No 2, (1959), 80-93.
2. Gabdulkhaev B.G., Approximate solutions of multidimensional singular integral equations, II. Izv. Vuzov. matem., No 1, (1976), 30-41.
3. Musayev B.I., Salayev V.V., On conjugated functions of many groups of variables, II. Uchen.zap. Azerb. Univ. Ser. Fiz. Mat., No 4, (1978), 5-18.
4. Jvarsheishvili A.G., On A.Zigmund's inequality for functions of two variables, Soobsh.AN. Gruz. SSR., v.15, No 9, (1954), 9-15.
5. Abdullayev F.A., On some multiplicative inequalities for functions of two variables, Azerb. Resp. "Tahsil" , No 2, (2004), 56-60 (Russian).
6. Zhizhiashvili L.V., On some problems from the theory of prime and multiple trigonometric and orthogonal series, Uspekhi mat. Nauk, v.28, No 2, (1973), 65-119.
7. Babayev A.A., On structure of a linear operator and its application, Uchen.Zap.AGU, ser.fiz.-mat.nauk, No 4, (1961), 13-16.
8. Huseynov A.I., Mukhtarov Kh.Sh., Introduction to the theory of nonlinear singular integral equations, "Nauk" (1979).
9. Il'in V.P. Some inequalities in functional spaces and their application to research of convergence of variational processes, Trudy Inst. Matem. AN SSSR. v.53, (1959), 64-121.
10. Gasimova N.F. On a nonlinear singular integral operator with Hilbert kernel, Baku Universitetinin Khabarleri. Fiz.mat.ser., No 4, (2005), 56-63.
