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1. Introduction

Some notations and auxiliary facts
Let’s consider the following double nonlinear singular integral equation (NSIE)
of the form

(1.1) ϕ(x, y) = λ

πZ
−π

πZ
−π

F [s, t, ϕ(s, t)]ctg
s− x

2
ctg

t− y

2
ds dt+ f(x, y),

where λ is a real parameter, F and f are the given functions, ϕ is the desired
function. Equations of the form (1.1) are met by studying limit values on the
frames of bicylinder of the function which is analytic in bicylindrical domain
[1] and the theory of singular integral equations [2]. In this paper we’ll solve
equation (1.1) by the contractive mappings method.
By C(T 2) we denote a space of continuous functions on T 2 = [−π, π]× [−π, π]
and have 2π periodic by each of variables with the norm

(1.2) kfkC(T2) = max
(x,y)∈T 2

|f(x, y)|.

3



Let

41,0
h f(x, y) = f(x+ h, y)− f(x, y), 40,1

η f(x, y) = f(x, y + η)− f(x, y),

(1.3) 41,1
h,ηf(x, y) = f(x, y)− f(x+ h, y)− f(x, y + η) + f(x+ h, y + η).

These quantities are called partial difference with respect to x with step h, with
respect to c with step η and mixed difference in aggregate of variables with step
h and η at the point (x, y).
Introduce the denotation:

ω1,0f (δ) = sup
|h|≤δ

k41,0
h f(x, y)kC(T 2), ω0,1f (η) = sup

|h|≤η
k40,1

h f(x, y)kC(T2),

(1.4) ω1,1f (δ, η) = sup
|h1| ≤ δ
|h2| ≤ η

k41,1
h1,h2

f(x, y)kC(T2).

By means of these characteristics in the paper [3] we introduce the space
(1.5)

K1,1
α,β=

n
f ∈ C(T 2)

¯̄̄
ω1,0f (δ) = O(δα), ω0,1f (η) = O(ηβ), ω1,1f (δ, η) = O(δα·ηβ)

o
0 < α, β ≤ 1

with finite norm

kfkK1,1
α,β
= max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩kfkC(T2), supδ>0

ω1,0f (δ)

δα
, sup

η>0

ω0,1f (η)

ηβ
, sup

δ > 0
η > 0

ω1,1f (δ)

δα · ηβ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and prove that the spaces K1,1

α,β is a Banach space.
Let f ∈ C(T 2). Let’s consider a double singular integral with Hilbert kernel

(1.6) f̃(x, y) =
1

4π2

πZ
−π

πZ
−π

f(s, t)ctg
s− x

2
ctg

t− y

2
ds dt.

Note that integral (1.6) is understood in the sense of Cauchy’s principal value.
From the estimates obtained in the papers [3], [4] it follows that the singular
operator (SO)

(1.7) (Sf)(x, y) = f̃(x, y)

Acts from K1,1
α,β to K

1,1
α,β and bounded for 0 < α, β < 1.
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In the space K1,1
α,β we take a ball with center at zero of radius R

B1,1
α,β(R) =

n
ϕ ∈ K1,1

α,β | kϕkK1,1
α,β
≤ R

o
.

The following statement was proved in the paper [5].

Statement 1. Let f ∈ K1,1
α,β and 1 ≤ p <∞. Then the inequality

(1.8) kfkC(T 2) ≤ lkfkγ
K1,1
α,β

· kfk1−γLp
,

where γ =
1 + p(α+ β)

(1 + αp)(1 + βp)
,

(1.9) l = max

(
(1 + αp)(1 + βp)

(αβp)1−γ
,

p
√
4(1 + αp)(1 + βp)

αβpπ1−γ

)
is true.
Later on we’ll need the following statements proved in [10].

Statement 2. Let the function F (x, y, ϕ) : T 2 × [−R,R] → < satisfy the
conditions:

1) there exists a partial derivative F 0ϕ(x, y, ϕ) and there is C0 > 0 such
that for ∀ϕ1, ϕ2 ∈ [−R,R] |F 0ϕ(x, y, ϕ1)− F 0ϕ(x, y, ϕ2)| ≤ C0|ϕ1 − ϕ2|;

2) ∃C1 > 0, ∀x1, x2 ∈ [−π, π] |F (x1, y, ϕ)− F (x2, y, ϕ)| ≤ C1|x1 − x2|α;
3) ∃C2 > 0, ∀y1, y2 ∈ [−π, π] |F (x, y1, ϕ)− F (x, y2, ϕ)| ≤ C2|y1 − y2|β;
4) ∃C3 > 0, ∀x1, y1, x2, y2 ∈ [−π, π]

|F (x1, y1, ϕ)−F (x1, y2, ϕ)−F (x2, y1, ϕ)+F (x2, y2, ϕ)| ≤ C3|x1−x2|α|y1−y2|β;
5) ∃C4 > 0, ∀x1, x2 ∈ [−π, π], ∀ϕ1, ϕ2 ∈ [−R,R]

|F (x1, y, ϕ1)−F (x1, y, ϕ2)−F (x2, y, ϕ1)+F (x2, y, ϕ2)| ≤ C4|x1−x2|α|ϕ1−ϕ2|;
6) ∃C5 > 0, ∀y1, y2 ∈ [−π, π], ∀ϕ1, ϕ2 ∈ [−R,R]

|F (x, y1, ϕ1)−F (x, y1, ϕ2)−F (x, y2, ϕ1)+F (x, y2, ϕ2)| ≤ C5|y1−y2|β|ϕ1−ϕ2|.

Then the operator of superposition F : ϕ(x, y)→ F [x, y, ϕ(x, y)] acts from the
ball B1,1

α,β(R) to the ball B
1,1
α,β(R1) where radius R1 is uniquely determined by

initial data.

Statement 3. Let the function F (s, t, ϕ) : T 2× [−R,R]→ < satisfy conditions
1)- 6) and f ∈ B1,1

α,β(R
0) (R0 < R).

Then for

(1.10) λ < min

(
1

C∗kSkL2→L2

,
R−R0

R1 · kSkK1,1
α,β→K1,1

α,β

)
,

where C∗ = max
x,y,ϕ

|F 0ϕ(x, y, ϕ)|, the operator

(1.11) (Lϕ)(x, y) = λ

πZ
−π

πZ
−π

F [s, t, ϕ(s, t)]ctg
s− x

2
ctg

t− y

2
ds dt+ f(x, y)
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Is a contractive map in the ball B1,1
α,β(R) in the metric of the space L2(T

2).

2. Approximate Solution of NSIE (1.1)

From estimate (1.8) it follows that if a sequence of functions {fn} ⊂ B1,1
α,β(R)

converges in the metric of the space L2(T 2) to some function f0, it converges to
f0 in the metric of the space C(T 2) as well.
It is valid.

Lemma 2.1. If the sequence {fu} ⊂ B1,1
α,β (R) converges in the metric of space

C
¡
T 2
¢
to f0, then f0 ∈ B1,1

α,β(R).

Proof. fn → f0 fn ∈ B1,1
α,β(R) . Then

(2.1) ∀ε > 0 ∃N(ε) ∀n > N(ε), ∀(x, y) ∈ T 2|fn(x, y)− f(x, y)| < ε.

Let’s take arbitrary points (x1, y), (x2, y) ∈ T 2 and arbitrary ε0 > 0 and fix

them. Take such ε > 0 that the inequality
ε

|x1 − x2|α
< ε0 be fulfilled. Then

we have

(2.2)
|f0(x1,y)−f0(x2,y)|

|x1−x2|α = |f0(x1,y)−fn(x1,y)+fn(x1,y)−fn(x2,y)+fn(x2,y)−f0(x2,y)|
|x1−x2|α

≤ |f0(x1,y)−fn(x1,y)|
|x1−x2|α + |fn(x1,y)−fn(x2,y)|

|x1−x2|α + |fn(x2,y)−f0(x2,y)|
|x1−x2|α < 2ε0 +R.

The relation

(2.3)
f0(x, y1)− f0(x, y2)

|y1 − y2|β
< 2ε0 +R

is proved similarly. Now, let’s fix the points (x1, y1), (x1, y2), (x2, y1), (x2, y2) ∈
T 2 and ε0 > 0. Take such ε > 0 that the relation

ε

|x1 − x2|α |y1 − y2|β
< ε0 be

fulfilled.
Then

(2.4)

|f0(x1,y1)−f0(x1,y2)−f0(x2,y1)+f0(x2,y2)|
|x1−x2|α|y1−y2|β = (|f0(x1, y1)− fn(x1, y1)

+fn(x1, y1)− f0(x1, y2) + fn(x1, y2)− fn(x1, y2)

−f0(x2, y1) + fn(x2, y1)− fn(x2, y1) + f0(x2, y2)

−fn(x2, y2) + fn(x2, y2)|) / |x1 − x2|α |y1 − y2|β

≤ |f0(x1,y1)−fn(x1,y1)|
|x1−x2|α|y1−y2|β + |f0(x1,y2)−fn(x1,y2)|

|x1−x2|α|y1−y2|β + |f0(x2,y1)−fn(x2,y1)|
|x1−x2|α|y1−y2|β

+ |f0(x2,y2)−fn(x2,y2)|
|x1−x2|α|y1−y2|β + |fn(x1,y1)−fn(x1,y2)−fn(x2,y1)+fn(x2,y2)|

|x1−x2|α|y1−y2|β

< 4ε0 +R
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It follows from estimates (2.2)-(2.4) that f0 ∈ B1,1
α,β(R + 4ε). Since ε0 > 0 is

arbitrary, we get f0 ∈ B1,1
α,β(R). The lemma is proved.

Now, let’s prove the main theorem:

Theorem 2.1. Let the function F (s, t, ϕ) : T 2× [−R,R]→ < satisfy conditions
1) - 6) and f ∈ B1,1

α,β(R
0) (R0 < R). Then for

|λ| < min
(

1

C∗kSkL2(T2)
,

R−R0

R1kSkK1,1
α,β→K1,1

α,β

)

NSIE (1.1) has a unique solution ϕ∗ in the ball B1,1
α,β(R) and sequential ap-

proximations ϕn = Lϕn−1 converge to this solution in the metric C(T 2) with
rate

kϕn − ϕ∗kC(T2) ≤M · ωnkϕ1 − ϕ0k
γ

1+γ

L2(T 2)
,

where M is a constant,

ω = {|λ|C∗kSkL2(T2)}
γ

1+γ , γ = min{α, β}.

Proof. Under the conditions of the theorem Lis contractive map in the metric
L2(T

2). Then by contractive mappings principle we get

(2.6)

kϕn − ϕ∗kL2(T2) ≤
1

1− ω0
ωn0 kϕ1 − ϕ0kL2(T 2) , where ω0 = |λ|C

∗ kSkL2(T2)

Estimate the norm kϕn − ϕ∗kC2(T2) by the norm kϕn − ϕ∗kL2(T2). ByB((x, y);h)
we denote a circle of radius h > 0 and center at the point (x, y) ∈ T 2. Later on,
let V2 = V h

2 (x, y) = T 2∩B((x, y);h). It is clear that for the function g ∈ C(T 2)
it holds the representation [9]:

g (x, y) =
1

mesV2

Z
V2

Z
g (s, t) ds dt− 1

mesV2

Z
V2

Z
[g (s, t)− g (x, y)] ds dt

Having taken g(x, y) = ϕ∗(x, y)− ϕn(x, y) we get:

(2.7)
ϕ∗(x, y)− ϕn(x, y) =

1

mesV2

R
V2

R
[ϕ∗(s, t)− ϕn(s, t)]ds dt

− 1

mesV2

R
V2

R
[ϕ∗(s, t)− ϕ∗(x, y)− ϕn(s, t) + ϕn(x, y)]ds dt
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Since ϕ∗ϕn ∈ B1,1
α,β(R), we have

|ϕ∗(s, t)− ϕ∗(x, y)− ϕn(s, t) + ϕn(x, y)| ≤
≤ |ϕ∗(s, t)− ϕ∗(s, y)− ϕ∗(x, t) + ϕ∗(x, y)|

+ |ϕ∗(s, y)− ϕ∗(x, y)|+ |ϕ∗(x, t)− ϕ∗(x, y)|
− |ϕn(s, t) + ϕn(s, y)− ϕn(x, t) + ϕn(x, y)|
+ |ϕn(s, y)− ϕn(x, y)|+ |ϕn(x, y)− ϕn(x, y)|

≤ 2M1(|s− x|α|t− y|β + |s− x|α + |t− y|β) ≤ 2M2h
γ .

And here M2 is a constant and γ = min {α, β} . Then it follows from (2.7) that

(2.8) |ϕ∗(x, y)− ϕn(x, y)| ≤
1√

mesV2
An +M2h

γ ≤M3h
−1An +M2h

γ ,

where An = kϕn − ϕ∗kL2(T2).

If we take h = A
1

1+γ
n , we have from (2.8)

|ϕ∗(x, y)− ϕn(x, y)| ≤M4A
γ

1+γ
n =M4 kϕn − ϕ∗k

γ
1+γ

L2(T2)
⇒

⇒ |ϕ∗ − ϕn|C(T2) ≤M4 kϕn − ϕ∗k
γ

1+γ

L2(T 2)
.

Taking into account the last inequality and taking M = M4

µ
1

1− ω0

¶ γ
1+γ

we

get the affirmation of the theorem.
The theorem is proved.
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