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Abstract. The number which can be represented by a regular geometrical
arrangement of equally spaced point is defined as figurate number. Each of
polygonal, centered polygonal and pyramidal numbers is a class of the series of
figurate numbers. In this paper, we obtain the periods of polygonal, centered
polygonal and pyramidal numbers by reducing each element of these numbers
modulo m.
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1. Introduction

The figurate numbers have a very important role to solve some problems in num-
ber theory and to determine speciality of some numbers, see for example, [8,9].
The polygonal numbers, the centered polygonal numbers, the pyramidal num-
bers and their properties have been studied by some authors, see for example,
[1,3,6,15]. The study of Fibonacci numbers by reducing modulo m began with
the earlier work of Wall [13] where the periods of Fibonacci numbers according
to modulo m were obtained. The theory is expanded to 3-step Fibonacci se-
quence by Ozkan, Aydin and Dikici [11]. Lii and Wang [10] contributed to study
of the Wall number for the k—step Fibonacci sequence. Deveci and Karaduman
[5] extended the concept to Pell numbers. Now we extend the concept to the
polygonal numbers, the centered polygonal numbers and the pyramidal numbers
which are classes of the series of figurate numbers.
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A sequence is periodic if, after a certain point, it consists only of repetitions of
a fixed subsequence. The number of elements in the repeating subsequence is
called the period of the sequence. For example, the sequence a,b,c,b,c,b,c,---
is periodic after the initial element a and has period 2. A sequence is simply
periodic with period n if the first n elements in the sequence form a repeat-
ing subsequence. For example, the sequence a,b,c,a,b,c,a,b,c,,- - is simply
periodic with period 3.

We have the following formulas for the polygonal numbers, the centered polyg-
onal numbers and the pyramidal numbers:

Let k be the number of sides in a polygon. The n** k—gonal number is obtained
by the formula

P(k,n) = (g —1)n? - <§2> n.

A polygonal number is a number represented as dots or pebbles arranged in
the shape of a regular polygon. We obtain n** triangular number, n!* square
number, n'* pentagonal number, --- for k = 3,4,5,---. For more information
on k—gonal numbers, see [12].

The nt" centered k—gonal number is obtained by the formula

C(k:,n):k?n(n—l)—i—l.

A centered polygonal number formed by a central dot, surrounded by polygonal
layers with a constant number of sides. Each side of a polygonal layer contains
one dot more than a side in the previous layer, so starting from the second
polygonal layer each layer of a centered k—gonal number contains & more points
than the previous layer. We obtain n* centered triangular number, n*" centered
square number, n'” centered pentagonal number, --- for k = 3,4,5,---. For
more information on centered k—gonal numbers, see [2].

The nt"k—gonal pyramidal number is obtained by formula

2
w_n sk _1\_ (k=5
P, Q—i—n (6 3) n( 5 .

A pyramidal number represents a pyramid with a base and given number of
sides. We obtain n** triangular pyramidal number, n** square pyramidal num-
ber, n'* pentagonal pyramidal number, --- for k = 3,4,5,---. For more infor-
mation on k—gonal pyramidal numbers, see [14].

In this paper, the usual notation p is used for a prime number.

2. Polygonal Numbers
In this section, we obtain the lengths of the periods of k—gonal numbers modulo
m. The notation Lp (m) denote the length of the smallest period which the

period is obtained each element of the polygonal numbers by reducing modulo
m for k > 3.
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Theorem 2.1. Let K =0 (mod 4). The lengths of the periods of the polygonal
numbers are as follows: ) foru— 1
i. ForueN, Lp(2¥) = u—1 foru>2?

ii. f p#2and # € N, then Lp (p‘g) =’

iii. If m = szl p;* (¢ > 1) where p;’s are distinct primes, then Lp (m) =
lem [Lp (p5')).

Proof. We prove this by direct calculation. Since k& = 0 (mod 4) and k& > 3,
k=4(, ({ €N).

i. Since

P (4¢,n) (mod 2) = [(2¢ —1)n? — (20— 2)n| (mod 2) =0 (mod 2) for n is even
and

P (40,n) (mod 2) = [(20 —1)n? — (20 —2)n| (mod 2) =1 (mod 2) for n is odd,
Lp(2)=2. If u> 1, then

P (46,2071 (mod 2v) = [(2(— 1) (212 4 (20— 2) 2°7| (mod 2v) =

= [2v0 (271 = 1) + 2% (1 —2"72)] (mod 2*) =0 (mod 2),

P (40,271 +1) (mod 2*) =
= [(@0—1) (271 +1)" + (20— 2) (2271 +1)] (mod 2¥) =
= [2%(¢+2""1 —2"72) + 1] (mod 2*) =1 (mod 2%),---,
P (40,2471 +n) (mod 2¥) =

[(26-1) 2271 4m)” + (2= 2) (2 4 n)] (mod 2¢) =
=[2v (2 +2n—2""2—-n—0+1)+1] (mod 2")+
+[(2¢ — 1)n* + (2¢ — 2)n] (modd 2") =

= [(2¢ —1)n*+ (2 —2)n] (mod 2*) = P (4¢,n) (mod 2“).

So, we get Lp (2%) = 2u~1.
ii. The proof is similar to the proof of i. and is omitted.
iii. Let lem [Lp (pi*)] = 5.

P (4¢,8) (mod m) = [(2¢ — 1) 2 + (2 — 2) 8] (mod m) = 0 (mod m),

P (40,8 +1) (mod m) = [(2@— D (B+1)%+(20—2) (B+ 1)} (mod m) =
= [8°(2¢ — 1) + 1] (mod m) =1(mod m),--,

P (4¢,8) (mod m) = [(2¢ — 1) B + (2¢ — 2) 8] (mod m) =0 (mod m),
P(46,8+1) (mod m) = [(2 1) (84 1)° + (20— 2) (B+1)] (mod m) =
= [5°(2¢ — 1) + 1] (mod m) =1 (mod m),---

3
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P (46,8 +n) (mod m) = (20~ 1) (8 +n)* + (20— 2) (8 +n)| (mod m) =
= [B(208 + 4ln — B —2n — 20 +2) + 1] (mod m) +
+[(2¢ = 1)n% + (20— 2) n] (mod m) =
= [(20 —1)n? + (2 — 2) n] (mod m) = P (4¢,n) (mod m).
So, we get Lp (m) =lem [Lp (pi*)].

Theorem 2.2: Let k =2 (mod 4). Then Lp (m) =m for m > 2.

Proof: We prove this by direct calculation. Since k = 2 (mod 4) and k& > 3,
k=442, (( €N).

P(4l+2,m+n) (mod m) = {(26) (m+n)*+(20—1) (m + n)} (mod m) =

m (20m + 2n — 20 — 1) (mod m) + [(2@) (n)? + (20— 1) (n)} (mod m) =

P(4¢+2,n) (mod m).
So, we get Lp (m) = m.

Theorem 2.3. Let kK = 1 (mod 4) or kK = 3 (mod 4). The lengths of the
periods of the polygonal numbers are as follows:

i. Foru e N, Lp (2v) =2uTL,

ii. f p#2and § € N, then Lp (pe) =p?.

iti. If m = [['_,p¥ (t>1) where p;’s are distinct primes, then Lp (m) =
lem [Lp (p5)].

Proof. The proof is similar to the proof of Theorem 2.1. and is omitted.
3. Centered Polygonal Numbers

In this section, we obtain the lengths of the periods of centered k—gonal numbers
modulo m. The notation Lop (m) denote the length of the smallest period
which the period is obtained each element of the centered polygonal numbers
by reducing modulo m for k& > 3.

Theorem 3.1. Let £ = 0 (mod 4) that is k = 2%.p{*.p52.--- .pf*, @ > 2 such
that p1,po, - -, py are distinct primes and ey, es, - - - , ; are 0 or positive integers.
The lengths of the periods of the centered polygonal numbers are as follows:

. " 1 for u < a,
i. ForueN, Lep (2 ):{ u—1 foru;a

<
ii. Ifv € Nsuchthat 1 <wv <tand A € N, then Lop (pﬁ) = { pAEev igi i ; Zv’

iii. If p #£ 2,p1,p2, - ,p; and 6 € N, then Lop (po) =p’.
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Proof. We prove this by direct calculation. Since kK = 0 (mod 4) and k > 3,
k= 2%pit.ps?.- - pf*, a > 2 such that p1,ps,--- ,p¢ are distinct primes and
e1,e2, -+, e are 0 or positive integers.

i. If u < @, then

C(k,n) (mod 2%) = [gn (n—1)+ 1} (mod 2*) =1 (mod 2%).

So, we get Lop (2%) = 1. If u > «, then
C (k,2"7") (mod 2v) = [£2v71 (2471 —1) + 1] (mod 2*) =1 (mod 2¥),
C (k,2v7'+1) (mod 2*) = [&
C (k27" +n) (mod 2*) = [£ (2“7 +n) (2" ' +n—1)+1] (mod 2%) =
[£ (2¢n+2v"1 (2¢=1 —1))] (mod 2¥)+ [&n(n —1) +1] (mod 2%) =
= [En(n—1)+1] (mod 2*) = C (k,n) (mod 2v).

So, we get Lop (2¢) = 2471,
ii. If A <e, and 1 <wv <t, then

C (k,n) (mod p}) = [gn (n—1)+ 1} (mod p}) =1 (mod p)).
So, we get Lep (py) =1. If A > e, and 1 < v < ¢, then
(k,pi‘_e“) (mod pf;) = [%pﬁ_e“ (pﬁ_e“ - 1) + 1] (mod pﬁ) =1 (mod pi‘),

(k,py~¢ +1) (mod p}) =
= [£(p)== +1)p)~° +1] (mod p}) =1 (mod p}),---,

Q Q

(k:py~ +n) (mod py) =
=[5 )~ +n) (p) +n—1)+1] (mod p)) =
[5 oo™ + 07 (™ = 1))] (mod py) +
+[§n (n—1)+1] (mod py) =
= [En(n—1)+1] (mod p)) = C (k,n) (mod p)).
So, we get Lop (p)) = py .
iii. If p # 2, p1,p2,- -+, D¢, then
(k p9) (mod pe) = [%pe (pe - 1) + 1] (mod D ) =1 (mod P )
(kp —|—l) (modp)E[%(p +1)p —&-1}( od p ) (modp)---,
(ksp” +n) (mod pf) =[5 (0" +n) (b +n—1) +1] (mod p’) =
[5 (2np” +p” (" = 1))] (mod p%) + [Fn(n—1)+1] (mod p’) =
[£n(n—1)+1] (mod p)p’) = C (k,n) (mod p?).

m Q@ aQ Q

7

(271 +1) 2“1 +1 ] (mod 2*) =1 (mod 2%),---
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So, we get Lop (p‘g) =’

Theorem 3.2. Let £k = 2 (mod 4) that is k = 2.p7*.p3%.--- .pi* such that
p1,P2, - ,py are distinct primes and ej,eq, - ,e; are positive integers. The
lengths of the periods of the centered polygonal numbers are as follows:

. 1 foru=1,
i. ForueN, Lop (2¥) = 2v foru > 1

1 for A <e
ii. 3 << A vy
ii. If v € Nsuch that 1 v tand )\ € N, then Lo p (pv) = { A—es for A > €.
iii. If p ;é 2,p1,p2, - ,p; and 0 € N, then Lop (pe) = pe.

Proof. We prove this by direct calculation. Since & = 2 (mod 4) and
k>3, k=2pi.ps?.--- .p* such that p1,pa,---,ps are distinct primes and
e1,€a, -+ , e are positive integers.

i. C(k,n) (mod 2) = [En(n—1)+1] (mod 2) =1 (mod 2).

So, we get Lop (2) = 1. If w > 1, then

C (k,2*) (mod 2*) = [£2*(2* — 1) + 1] (mod 2¥) =1 (mod 2%),

C (k2% +1) (mod 2v) = [£(2¢+1)2“ + 1] (mod 2*) =1 (mod 2%),- -,
C (k,2" +n) (mod 2%) = [£ (2% +n) (2% +n —1) + 1] (mod 2%) =

= [£ (2uHin 424 (24 — 1))] (mod 2¥) + [En(n—1)+1] (mod 2¢) =

= [En(n—1)+1] (mod 2) =C (k,n) (mod 2%).

So, we get Lop (2%) = 2%
The proofs of ii. and iii. are similar to the proofs of Theorem 3.1. ii. and
Theorem 3.1.iii., respectively and are omitted.

Theorem 3.3. Let & = 3 (mod 4) that is k = pi*.p3%.--- .pi* such that
p1,P2, - ,p; are distinct primes and ej,eq, - ,e; are positive integers. The
lengths of the periods of the centered polygonal numbers are as follows:

i. For u e N, Lop (2¢) = 2u+L,

<
ii. Ifv € Nsuch that 1 <v <tand A € N, then Lop (p)) :{ p/\lev for A< e,

for A > e,.
iii. If p#2,p1,p2,--- ,pr and § € N, then Lep (pe) =p’.

Proof. We prove this by direct calculation. Since & = 3 (mod 4), k =
pIt.ps?. .-+ .pi* such that py,po,-- -, p; are distinct primes and eq, ez, - - , e; are
positive integers.

C (k,24T1) (mod 2v) = [E2u+! (2vF1 — 1) + 1] (mod 2%) =1 (mod 2¥),

C (k, 2" +1) (mod 2%) [i (24+1 4+ 1) 24+ +-1] (mod 2*) =1 (mod 2%),-
( k,2utl —|—n) (mod 2“ [5 (2“+1 + n) (2“+1 +n— 1) + 1} (mod 2%) =
[
[

B (2ut2n 4 2vF1 (2u+! —1))] (mod 2%) + [En(n—1)+1] (mod 2v) =
En(n—1) +1] (mod 2*) = C (k,n) (mod 2*).
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So, we get Lop (2¢) = 24+,

The proofs of ii. and iii. are similar to the proofs of Theorem 3.1. ii. and
Theorem 3.1.iii., respectively and are omitted.

If k =1 (mod 4), then the rules are the same the rules of Theorem 3.3. The
proof is similar to the proof of Theorem 3.3 and is omitted.

Theorem 3.4. If m = Hle p* (t > 1) where p;’s are distinct primes, then
Lep (m) =lem [Lep ()]

Proof. We prove this by direct calculation. Let lem [Lep (pi*)] = 5.
C (k,B) (mod m) = [£3(8 —1)+1] (mod m) =1 (mod m),
C(k,B+1) (mod m)=[£(B+1)B+1] (mod m) =1(mod m),--,
C (k,B+n) (mod m)= [ (B+n)(B+n—1)+1] (mod m)=
[£38(B+2n—1)] (mod m)+ [4n(n—1)+1] (mod m)=

= [En(n—1)+1] (mod m)=C (k,n) (mod 2¥).

So, we get Lop (m) =lem [Lep (p57)).
4. Pyramidal Numbers

In this section, we obtain the lengths of the periods of k—gonal pyramidal
numbers modulo m. The notation Lpy (m) denote the length of the smallest
period which the period is obtained each element of the pyramidal numbers by
reducing modulo m for k > 3.

Theorem 4.1. Let k = 0 (mod 3) or k = 1 (mod 3). The lengths of the
periods of the pyramidal numbers are as follows:

i. If p=2,3, then Lpy (p*) = p»*! for u € N.

ii. If p#£2,3 and 0 € N, then Lpy (pe) =’

iii. If m = [[/_,pS (t>1) where p;’s are distinct primes, then Lpy (m) =
lem [Lpy (pi*)]-

Proof. We prove this by direct calculation. Let £ =0 (mod 3) that is k = 3¢,
(£ € N).
i. If p = 2, then we have for u € N

Py (mod 2%) =

2utl_1

= [ () () - (27— 1) (552)] o 29 =

= [% (5—22%3)] (mod 2*) = 0(mod 2Y),

PR, (mod 2 = Bl ) (3 = gy - (20 (2552) | (mod 24) =

= [2 (5 —22+3)] (mod 2*) = 0 (mod 2%,
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P3O, (mod 2v) =
=[5 e 1) (- ) - @ ) (459) | (mod 29 =
= [Z (5-22""3)] +1 (mod 2*) =1(mod 24),---,

P, (mod 2v) =

= [l et ) (3 - 4) (20 ) (352)] (mod 21) =
= [% (5 2%) (mod 2] + [% +n® (% — ) —n (%2)] (mod 2%) =
= PP (mod 2v).

So, we get Lpy (2¢) = 2u+L,
If p = 3, then the proof is similar to the proof of the case p = 2 and is omitted.
ii. If p# 2,3 and 0 € N, then we have

P (mod p*) =

=[5+ 0" (3~ 8) — 0~ 1) (%52)] (mod p) =

= |5 (5= 2p") (" + 1) (mod p*) =0 (mod p*),

PiY (mod p*) = [# + @)’ (5 —3) - @) (3%5)] (mod p*) =

= :% (5 —2.p%) (p* + 1)} (mod p*) = 0 (mod p*),
)

= [ 4 () (3 = 4) — (" +m) (%52) | (mod pt) =

Jr{%Q +n3 (%e — é) -n (Lf)} (mod 2%) = PT(LM) (mod 2%).

78



iii. Let lem [Lpy (pi*)] = 6.
Pﬁ(gﬁ (mod m) = {@ + (8- 1)3 (%‘Z — %) -(B-1) (?’ET_‘L”)] (mod m) =

= [% (5-2.0) B+ 1)} (mod m) = 0(mod m),

PP (mod m) =[5+ (8)° (3~ 4) = (8) (252) ] (mod m) =

= 126G-28)(8+1)] (mod m)=0(mod m),

P (mod m) = [P 4 (84 1)° (3~ 4) = (8 1) (*52)] (mod m) =
= 2(-28)(8+1)+1] (mod m)=1(mod m), -,

P (mod m) =[50 4+ (54+n)" (% — 1) — (5 +n) (%2)] (mod m) =
[2(5-2.8)(8+1)] (mod m)+ |5 +n® (% — ) —n (252)] (mod m) =

= pY (mod m).
So, we get Lpy (m) = lem [Lpy (p;*)].

Theorem 4.2. Let k =2 (mod 3). The lengths of the periods of the pyramidal
numbers are as follows:

i. For u € N, Lpy (2“) = Qutl

ii. If p#2and 0 € N, then Lpy (po) =’

iti. If m = [J'_, p¢* (t>1) where p;’s are distinct primes, then Lpy (m) =
lem [Lpy (pi*)]-

Proof. The proof is similar to the proof of Theorem 4.1. and is omitted.
5. Open Question

Wall in [13] proved that the lengths of the periods of the recurring sequences
obtained by reducing a Fibonacci sequences by a modulo m are equal to the
lengths of the of ordinary 2—step Fibonacci recurrences in cyclic groups. The
theory is expanded to 3-step Fibonacci sequence by Ozkan, Aydin and Dikici
[11]. Lii and Wang contributed to the study of the Wall number for the k-
step Fibonacci sequence [10]. Some works on the concept have been made,
for example, [4,7]. Deveci and Karaduman [5] extended the concept to Pell
sequences in finite groups. Are there groups such that the lengths of the periods
of recurrence sequences obtained by reducing according to a modulo m anyone
of polygonal numbers, centered polygonal numbers and pyrimidal numbers are
equal to the lengths of the periods of 2—step or k—step Fibonacci recurrences
in these groups?
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