Selçuk J. Appl. Math.
Vol. 12. No. 2. pp. 63-70, 2011

On Absolute Weighted Mean Summability of Orthogonal Series

Xhevat Z. Krasniqi
Department of Mathematics and Computer Sciences, University of Prishtina, Avenue "Mother Theresa " 5, Prishtinë, 10000, Kosovë
e-mail: xheki00@hotmail.com

Received Date:October 1, 2010
Accepted Date: January 25, 2011

Abstract

In this paper we prove two theorems on absolute weighted mean summability of orthogonal series. These theorems generalize results of the paper [4].

Key words: Orthogonal series, Nörlund matrix, summability.
2000 Mathematics Subject Classification: 42C15, 40F05, $40 G 05$.

1. Introduction and Preliminaries

Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with its partial sums $\left\{s_{n}\right\}$, and let $A=$ $\left(a_{n v}\right)$ be a normal matrix, that is, lower-semi matrix with nonzero entries. By $\left(A_{n}(s)\right)$ we denote the A-transform of the sequence $s=\left\{s_{n}\right\}$, i.e.,

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}
$$

The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $|A|_{k}, k \geq 1$, [5] if

$$
\sum_{n=0}^{\infty}\left|a_{n n}\right|^{1-k}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty
$$

In the special case when A is a generalized Nörlund matrix (resp. $k=1$), $|A|_{k}$ summability is the same as $|N, p, q|_{k}$ (resp. $|N, p, q|$) summability [6] (see [3]). By a generalized Nörlund matrix we mean one such that

$$
\begin{array}{ll}
a_{n v}=\frac{p_{n-v} q_{v}}{R_{n}} & \text { for } \quad 0 \leq v \leq n \\
a_{n v}=0 & \text { for } v>n
\end{array}
$$

where for two given sequences of positive real constants $p=\left\{p_{n}\right\}$ and $q=\left\{q_{n}\right\}$, the convolution $R_{n}:=(p * q)_{n}$ is defined by

$$
(p * q)_{n}=\sum_{v=0}^{n} p_{v} q_{n-v}=\sum_{v=0}^{n} p_{n-v} q_{v}
$$

When $(p * q)_{n} \neq 0$ for all n, the generalized Nörlund transform of the sequence $\left\{s_{n}\right\}$ is the sequence $\left\{t_{n}^{p, q}(s)\right\}$ defined by

$$
t_{n}^{p, q}(s)=\frac{1}{R_{n}} \sum_{m=0}^{n} p_{n-m} q_{m} s_{m}
$$

and $|A|_{k}$ summability reduces to the following definition:
The infinite series $\sum_{n=0}^{\infty} a_{n}$ is absolutely summable $(N, p, q)_{k}, k \geq 1$, if the series

$$
\sum_{n=0}^{\infty}\left(\frac{R_{n}}{q_{n}}\right)^{k-1}\left|t_{n}^{p, q}(s)-t_{n-1}^{p, q}(s)\right|^{k}
$$

converges (see [6]), and we write in brief

$$
\sum_{n=0}^{\infty} a_{n} \in|N, p, q|_{k}
$$

Let $\left\{\varphi_{n}(x)\right\}$ be an orthonormal system defined in the interval (a, b). We assume that $f(x)$ belongs to $L^{2}(a, b)$ and

$$
\begin{equation*}
f(x) \sim \sum_{n=0}^{\infty} c_{n} \varphi_{n}(x) \tag{1.1}
\end{equation*}
$$

where $c_{n}=\int_{a}^{b} f(x) \varphi_{n}(x) d x,(n=0,1,2, \ldots)$.
We write

$$
R_{n}^{j}:=\sum_{v=j}^{n} p_{n-v} q_{v}, R_{n}^{n+1}=0, R_{n}^{0}=R_{n}
$$

and

$$
P_{n}:=(p * 1)_{n}=\sum_{v=0}^{n} p_{v} \quad \text { and } \quad Q_{n}:=(1 * q)_{n}=\sum_{v=0}^{n} q_{v} .
$$

Regarding to $|N, p, q| \equiv|N, p, q|_{1}$ summability of the orthogonal series (1.1) the following two theorems are proved.

Theorem .1.1. [4] If the series

$$
\sum_{n=0}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|c_{j}\right|^{2}\right\}^{\frac{1}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x)
$$

is summable $|N, p, q|$ almost everywhere.
Theorem 1.2. [4] Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be non-negative. If the series $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \Omega(n) w^{(1)}(n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x) \in|N, p, q|$ almost everywhere, where $w^{(1)}(n)$ is defined by $w^{(1)}(j):=j^{-1} \sum_{n=j}^{\infty} n^{2}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}$.

The main purpose of this paper is studying of the $|A|_{k}$ summability of the orthogonal series (1.1), for $1 \leq k \leq 2$, and to deduce as corollaries all results of Y. Okuyama [4]. Before doing this first introduce some further notations.

Given a normal matrix $A:=\left(a_{n v}\right)$, we associate two lower semi matrices $\bar{A}:=$ $\left(\bar{a}_{n v}\right)$ and $\hat{A}:=\left(\hat{a}_{n v}\right)$ as follows:

$$
\bar{a}_{n v}:=\sum_{i=v}^{n} a_{n i}, n, i=0,1,2, \ldots
$$

and

$$
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively.
The following lemma due to Beppo Levi (see, for example [7]) is often used in the theory of functions. It will need us to prove main results.

Lemma 1.1. If $f_{n}(t) \in L(E)$ are non-negative functions and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{E} f_{n}(t) d t<\infty \tag{1.2}
\end{equation*}
$$

then the series

$$
\sum_{n=1}^{\infty} f_{n}(t) d t
$$

converges almost everywhere on E to a function $f(t) \in L(E)$. Moreover, the series (1.2) is also convergent to f in the norm of $L(E)$.

Throughout this paper K denotes a positive constant that it may depends only on k, and be different in different relations.

2. Main Results

We prove the following theorem.
Theorem 2.1. If for $1 \leq k \leq 2$ the series

$$
\sum_{n=1}^{\infty}\left\{\left|a_{n n}\right|^{\frac{2}{k}-2} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x)
$$

is summable $|A|_{k}$ almost everywhere.
Proof. For the matrix transform $A_{n}(s)(x)$ of the partial sums of the orthogonal series $\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x)$ we have

$$
\begin{aligned}
A_{n}(s)(x) & =\sum_{v=0}^{n} a_{n v} s_{v}(x)=\sum_{v=0}^{n} a_{n v} \sum_{j=0}^{v} c_{j} \varphi_{j}(x) \\
& =\sum_{j=0}^{n} c_{j} \varphi_{j}(x) \sum_{v=j}^{n} a_{n v}=\sum_{j=0}^{n} \bar{a}_{n j} c_{j} \varphi_{j}(x)
\end{aligned}
$$

where $\sum_{j=0}^{v} c_{j} \varphi_{j}(x)$ is the partial sum of order v of the series (1.1). Hence

$$
\begin{aligned}
\bar{\Delta} A_{n}(s)(x) & =\sum_{j=0}^{n} \bar{a}_{n j} c_{j} \varphi_{j}(x)-\sum_{j=0}^{n-1} \bar{a}_{n-1, j} c_{j} \varphi_{j}(x) \\
& =\bar{a}_{n n} c_{n} \varphi_{n}(x)+\sum_{j=0}^{n-1}\left(\bar{a}_{n, j}-\bar{a}_{n-1, j}\right) c_{j} \varphi_{j}(x) \\
& =\hat{a}_{n n} c_{n} \varphi_{n}(x)+\sum_{j=0}^{n-1} \hat{a}_{n, j} c_{j} \varphi_{j}(x)=\sum_{j=0}^{n} \hat{a}_{n, j} c_{j} \varphi_{j}(x) .
\end{aligned}
$$

Using the Hölder's inequality and orthogonality to the latter equality, we have that

$$
\begin{aligned}
\int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} d x & \leq(b-a)^{1-\frac{k}{2}}\left(\int_{a}^{b}\left|A_{n}(s)(x)-A_{n-1}(s)(x)\right|^{2} d x\right)^{\frac{k}{2}} \\
& =(b-a)^{1-\frac{k}{2}}\left(\int_{a}^{b}\left|\sum_{j=0}^{n} \hat{a}_{n, j} c_{j} \varphi_{j}(x)\right|^{2} d x\right)^{\frac{k}{2}}
\end{aligned}
$$

$$
=(b-a)^{1-\frac{k}{2}}\left[\sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{\frac{k}{2}} .
$$

Thus, the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k} \int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} d x \leq K \sum_{n=1}^{\infty}\left\{\left|a_{n n}\right|^{\frac{2}{k}-2} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right\}^{\frac{k}{2}} \tag{2.1}
\end{equation*}
$$

converges by the assumption. From this fact and since the functions $\left|\bar{\Delta} A_{n}(s)(x)\right|$ are non-negative, then by the Lemma 1.1 the series

$$
\sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k}
$$

converges almost everywhere. This completes the proof of the theorem.
If we put

$$
\begin{equation*}
\mathcal{H}^{(k)}(A ; j):=\frac{1}{j^{\frac{2}{k}-1}} \sum_{n=j}^{\infty} n^{\frac{2}{k}}\left|n a_{n n}\right|^{\frac{2}{k}-2}\left|\hat{a}_{n, j}\right|^{2} \tag{2.2}
\end{equation*}
$$

then the following theorem holds true.
Theorem 2.2. Let $1 \leq k \leq 2$ and $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. If the following series $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \Omega^{\frac{2}{k}-1}(n) H^{(k)}(A ; n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x) \in|A|_{k}$ almost everywhere, where $H^{(k)}(A ; j)$ is defined by (2.2).

Proof. Applying Hölder's inequality to the inequality (2.1) we get that

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k} \int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} d x \leq \\
& \quad \leq K \sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k}\left[\sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{\frac{k}{2}} \\
& \quad=K \sum_{n=1}^{\infty} \frac{1}{(n \Omega(n))^{\frac{2-k}{2}}}\left[\left|a_{n n}\right|^{\frac{2}{k}-2}(n \Omega(n))^{\frac{2}{k}-1} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{\frac{k}{2}} \\
& \quad \leq K\left(\sum_{n=1}^{\infty} \frac{1}{(n \Omega(n))}\right)^{\frac{2-k}{2}}\left[\sum_{n=1}^{\infty}\left|a_{n n}\right|^{\frac{2}{k}-2}(n \Omega(n))^{\frac{2}{k}-1} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{\frac{k}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq K\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2} \sum_{n=j}^{\infty}\left|a_{n n}\right|^{\frac{2}{k}-2}(n \Omega(n))^{\frac{2}{k}-1}\left|\hat{a}_{n, j}\right|^{2}\right\}^{\frac{k}{2}} \\
& \leq K\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2}\left(\frac{\Omega(j)}{j}\right)^{\frac{2}{k}-1} \sum_{n=j}^{\infty} n^{\frac{2}{k}}\left|n a_{n n}\right|^{\frac{2}{k}-2}\left|\hat{a}_{n, j}\right|^{2}\right\}^{\frac{k}{2}} \\
& =K\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2} \Omega^{\frac{2}{k}-1}(j) \mathcal{H}^{(k)}(A ; j)\right\}^{\frac{k}{2}}
\end{aligned}
$$

which is finite by virtue of the hypothesis of the theorem, and this completes the proof of the theorem.

For $a_{n, v}=\frac{p_{n-v} q_{v}}{R_{n}}$ we have $a_{n, n}=\frac{p_{0} q_{n}}{R_{n}}$ and

$$
\begin{aligned}
\hat{a}_{n, v} & =\bar{a}_{n, v}-\bar{a}_{n-1, v} \\
& =\sum_{j=v}^{n} a_{n j}-\sum_{j=v}^{n-1} a_{n-1, j} \\
& =\frac{1}{R_{n}} \sum_{j=v}^{n} p_{n-j} q_{j}-\frac{1}{R_{n-1}} \sum_{j=v}^{n-1} p_{n-1-j} q_{j} \\
& =\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}
\end{aligned}
$$

therefore the following corollaries follow from the main results:
Corollary 2.1. If for $1 \leq k \leq 2$ the series

$$
\sum_{n=1}^{\infty}\left\{\left(\frac{R_{n}}{q_{n}}\right)^{2-\frac{2}{k}} \sum_{j=0}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|c_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x)
$$

is summable $|N, p, q|_{k}$ almost everywhere.
Corollary 2.2. Let $1 \leq k \leq 2$ and $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. If the following series $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \Omega^{\frac{2}{k}-1}(n) \mathcal{N}^{(k)}(n)$ converges, then the orthogonal
series $\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x) \in|N, p, q|_{k}$ almost everywhere, where $\mathcal{N}^{(k)}(j)$ is defined by

$$
\mathcal{N}^{(k)}(j):=\frac{1}{j^{\frac{2}{k}-1}} \sum_{n=j}^{\infty} n^{\frac{4}{k}-2}\left(\frac{R_{n}}{q_{n}}\right)^{2-\frac{2}{k}}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2} .
$$

Remark 2.1. We note that for $k=1$ corollaries 2.1 and 2.2 reduce in theorems 1.1 and 1.2 respectively.

Let us prove now another two corollaries that follow from the corollary 2.1.
Corollary 2.3. If for $1 \leq k \leq 2$ the series

$$
\sum_{n=0}^{\infty}\left(\frac{p_{n}}{P_{n}^{1 / k} P_{n-1}}\right)^{k}\left\{\sum_{j=1}^{n} p_{n-j}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|N, p|_{k}$ almost everywhere.
Proof. After some elementary calculations one can show that

$$
\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}=\frac{p_{n}}{P_{n} P_{n-1}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right) p_{n-j}
$$

for all $q_{n}=1$, and the proof follows immediately from Theorem 2.1.
Corollary 2.4. If for $1 \leq k \leq 2$ the series

$$
\sum_{n=0}^{\infty}\left(\frac{q_{n}^{1 / k}}{Q_{n}^{1 / k} Q_{n-1}}\right)^{k}\left\{\sum_{j=1}^{n} Q_{j-1}^{2}\left|a_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|\bar{N}, q|_{k}$ almost everywhere.
Proof. From the fact that

$$
\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}=-\frac{q_{n} Q_{j-1}}{Q_{n} Q_{n-1}}
$$

for all $p_{n}=1$, the proof follows immediately from Theorem 2.1.
Remark 2.2. For $k=1$ corollaries 2.3 and 2.4 are proved earlier in [1] and [2].

References

1. Y. Okuyama, On the absolute Nörlund summability of orthogonal series, Proc. Japan Acad. 54, (1978), 113-118.
2. Y. Okuyama and T. Tsuchikura, On the absolute Riesz summability of orthogonal series, Analysis Math. 7, (1981), 199-208.
3. M. Tanaka, On generalized Nörlund methods of summability, Bull. Austral. Math. Soc. 19, (1978), 381-402.
4. Y. Okuyama, On the absolute generalized Nörlund summability of orthogonal series, Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165.
5. M. A. Sarigöl, On absolute weighted mean summability methods, Proc. Amer. Math. Soc. Vol. 115, No. 1, May 1992.
6. M. A. Sarigöl, On some absolute summability methods, Bull. Cal. Math. Soc. Vol. 83, (1991), 421-426.
7. I. P. Natanson, Theory of functions of a real variable (2 vols), Frederick Ungar, New York 1955, 1961. MR 16-804, 26 \# 6309.
