On Absolute Weighted Mean Summability of Orthogonal Series

Xhevat Z. Krasniqi

Department of Mathematics and Computer Sciences, University of Prishtina, Avenue "Mother Theresa " 5, Prishtinë, 10000, Kosovë

e-mail: xheki00@hotmail.com

Received Date:October 1, 2010 Accepted Date: January 25, 2011

Abstract. In this paper we prove two theorems on absolute weighted mean summability of orthogonal series. These theorems generalize results of the paper [4].

Key words: Orthogonal series, Nörlund matrix, summability. 2000 Mathematics Subject Classification: 42C15, 40F05, 40G05.

1. Introduction and Preliminaries

Let $\sum_{n=0}^{\infty} a_n$ be a given infinite series with its partial sums $\{s_n\}$, and let $A = (a_{nv})$ be a normal matrix, that is, lower-semi matrix with nonzero entries. By $(A_n(s))$ we denote the A-transform of the sequence $s = \{s_n\}$, i.e.,

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v.$$

The series $\sum_{n=0}^{\infty} a_n$ is said to be summable $|A|_k$, $k \ge 1$, [5] if

$$\sum_{n=0}^{\infty} |a_{nn}|^{1-k} |A_n(s) - A_{n-1}(s)|^k < \infty.$$

In the special case when A is a generalized Nörlund matrix (resp. k = 1), $|A|_k$ summability is the same as $|N, p, q|_k$ (resp. |N, p, q|) summability [6] (see [3]). By a generalized Nörlund matrix we mean one such that

$$a_{nv} = \frac{p_{n-v}q_v}{R_n}$$
 for $0 \le v \le n$,
 $a_{nv} = 0$ for $v > n$,

where for two given sequences of positive real constants $p = \{p_n\}$ and $q = \{q_n\}$, the convolution $R_n := (p * q)_n$ is defined by

$$(p*q)_n = \sum_{v=0}^n p_v q_{n-v} = \sum_{v=0}^n p_{n-v} q_v.$$

When $(p*q)_n \neq 0$ for all n, the generalized Nörlund transform of the sequence $\{s_n\}$ is the sequence $\{t_n^{p,q}(s)\}$ defined by

$$t_n^{p,q}(s) = \frac{1}{R_n} \sum_{m=0}^n p_{n-m} q_m s_m$$

and $|A|_k$ summability reduces to the following definition: The infinite series $\sum_{n=0}^{\infty} a_n$ is absolutely summable $(N, p, q)_k$, $k \ge 1$, if the series

$$\sum_{n=0}^{\infty} \left(\frac{R_n}{q_n} \right)^{k-1} |t_n^{p,q}(s) - t_{n-1}^{p,q}(s)|^k$$

converges (see [6]), and we write in brief

$$\sum_{n=0}^{\infty} a_n \in |N, p, q|_k.$$

Let $\{\varphi_n(x)\}\$ be an orthonormal system defined in the interval (a,b). We assume that f(x) belongs to $L^2(a,b)$ and

(1.1)
$$f(x) \sim \sum_{n=0}^{\infty} c_n \varphi_n(x),$$

where $c_n = \int_a^b f(x) \varphi_n(x) dx$, (n = 0, 1, 2, ...).

$$R_n^j := \sum_{v=j}^n p_{n-v} q_v, \ R_n^{n+1} = 0, \ R_n^0 = R_n$$

and

$$P_n := (p * 1)_n = \sum_{v=0}^n p_v$$
 and $Q_n := (1 * q)_n = \sum_{v=0}^n q_v$.

Regarding to $|N, p, q| \equiv |N, p, q|_1$ summability of the orthogonal series (1.1) the following two theorems are proved.

Theorem .1.1. [4] If the series

$$\sum_{n=0}^{\infty} \left\{ \sum_{j=1}^{n} \left(\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}} \right)^2 |c_j|^2 \right\}^{\frac{1}{2}}$$

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable [N, p, q] almost everywhere.

Theorem 1.2. [4] Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n)/n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)}$ converges. Let $\{p_n\}$ and $\{q_n\}$ be non-negative. If the series $\sum_{n=1}^{\infty} |c_n|^2 \Omega(n) w^{(1)}(n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} c_n \varphi_n(x) \in |N, p, q|$ almost everywhere, where $w^{(1)}(n)$ is defined by $w^{(1)}(j) := j^{-1} \sum_{n=j}^{\infty} n^2 \left(\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}}\right)^2$.

The main purpose of this paper is studying of the $|A|_k$ summability of the orthogonal series (1.1), for $1 \le k \le 2$, and to deduce as corollaries all results of Y. Okuyama [4]. Before doing this first introduce some further notations. Given a normal matrix $A := (a_{nv})$, we associate two lower semi matrices $\bar{A} := (\bar{a}_{nv})$ and $\hat{A} := (\hat{a}_{nv})$ as follows:

$$\bar{a}_{nv} := \sum_{i=n}^{n} a_{ni}, \ n, i = 0, 1, 2, \dots$$

and

$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \ \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \ n = 1, 2, \dots$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively.

The following lemma due to Beppo Levi (see, for example [7]) is often used in the theory of functions. It will need us to prove main results.

Lemma 1.1. If $f_n(t) \in L(E)$ are non-negative functions and

(1.2)
$$\sum_{n=1}^{\infty} \int_{E} f_n(t)dt < \infty,$$

then the series

$$\sum_{n=1}^{\infty} f_n(t)dt$$

converges almost everywhere on E to a function $f(t) \in L(E)$. Moreover, the series (1.2) is also convergent to f in the norm of L(E).

Throughout this paper K denotes a positive constant that it may depend only on k, and be different in different relations.

2. Main Results

We prove the following theorem.

Theorem 2.1. If for $1 \le k \le 2$ the series

$$\sum_{n=1}^{\infty} \left\{ |a_{nn}|^{\frac{2}{k}-2} \sum_{j=0}^{n} |\hat{a}_{n,j}|^2 |c_j|^2 \right\}^{\frac{k}{2}}$$

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable $|A|_k$ almost everywhere.

Proof. For the matrix transform $A_n(s)(x)$ of the partial sums of the orthogonal series $\sum_{n=0}^{\infty} c_n \varphi_n(x)$ we have

$$A_{n}(s)(x) = \sum_{v=0}^{n} a_{nv} s_{v}(x) = \sum_{v=0}^{n} a_{nv} \sum_{j=0}^{v} c_{j} \varphi_{j}(x)$$
$$= \sum_{j=0}^{n} c_{j} \varphi_{j}(x) \sum_{v=j}^{n} a_{nv} = \sum_{j=0}^{n} \bar{a}_{nj} c_{j} \varphi_{j}(x)$$

where $\sum_{j=0}^{v} c_j \varphi_j(x)$ is the partial sum of order v of the series (1.1). Hence

$$\bar{\Delta}A_{n}(s)(x) = \sum_{j=0}^{n} \bar{a}_{nj}c_{j}\varphi_{j}(x) - \sum_{j=0}^{n-1} \bar{a}_{n-1,j}c_{j}\varphi_{j}(x)
= \bar{a}_{nn}c_{n}\varphi_{n}(x) + \sum_{j=0}^{n-1} (\bar{a}_{n,j} - \bar{a}_{n-1,j}) c_{j}\varphi_{j}(x)
= \hat{a}_{nn}c_{n}\varphi_{n}(x) + \sum_{j=0}^{n-1} \hat{a}_{n,j}c_{j}\varphi_{j}(x) = \sum_{j=0}^{n} \hat{a}_{n,j}c_{j}\varphi_{j}(x).$$

Using the Hölder's inequality and orthogonality to the latter equality, we have that

$$\int_{a}^{b} |\bar{\Delta}A_{n}(s)(x)|^{k} dx \leq (b-a)^{1-\frac{k}{2}} \left(\int_{a}^{b} |A_{n}(s)(x) - A_{n-1}(s)(x)|^{2} dx \right)^{\frac{k}{2}}$$

$$= (b-a)^{1-\frac{k}{2}} \left(\int_{a}^{b} \left| \sum_{j=0}^{n} \hat{a}_{n,j} c_{j} \varphi_{j}(x) \right|^{2} dx \right)^{\frac{k}{2}}$$

$$= (b-a)^{1-\frac{k}{2}} \left[\sum_{j=0}^{n} |\hat{a}_{n,j}|^2 |c_j|^2 \right]^{\frac{k}{2}}.$$

Thus, the series

$$(2.1) \quad \sum_{n=1}^{\infty} |a_{nn}|^{1-k} \int_{a}^{b} |\bar{\Delta}A_{n}(s)(x)|^{k} dx \le K \sum_{n=1}^{\infty} \left\{ |a_{nn}|^{\frac{2}{k}-2} \sum_{j=0}^{n} |\hat{a}_{n,j}|^{2} |c_{j}|^{2} \right\}^{\frac{k}{2}}$$

converges by the assumption. From this fact and since the functions $|\bar{\Delta}A_n(s)(x)|$ are non-negative, then by the Lemma 1.1 the series

$$\sum_{n=1}^{\infty} |a_{nn}|^{1-k} |\bar{\Delta}A_n(s)(x)|^k$$

converges almost everywhere. This completes the proof of the theorem.

If we put

(2.2)
$$\mathcal{H}^{(k)}(A;j) := \frac{1}{j^{\frac{2}{k}-1}} \sum_{n=j}^{\infty} n^{\frac{2}{k}} |na_{nn}|^{\frac{2}{k}-2} |\hat{a}_{n,j}|^2$$

then the following theorem holds true.

Theorem 2.2. Let $1 \leq k \leq 2$ and $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n)/n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)}$ converges. If the following series $\sum_{n=1}^{\infty} |c_n|^2 \Omega^{\frac{2}{k}-1}(n) H^{(k)}(A;n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} c_n \varphi_n(x) \in |A|_k$ almost everywhere, where $H^{(k)}(A;j)$ is defined by (2.2).

Proof. Applying Hölder's inequality to the inequality (2.1) we get that

$$\begin{split} \sum_{n=1}^{\infty} |a_{nn}|^{1-k} \int_{a}^{b} |\bar{\Delta}A_{n}(s)(x)|^{k} dx &\leq \\ &\leq K \sum_{n=1}^{\infty} |a_{nn}|^{1-k} \left[\sum_{j=0}^{n} |\hat{a}_{n,j}|^{2} |c_{j}|^{2} \right]^{\frac{k}{2}} \\ &= K \sum_{n=1}^{\infty} \frac{1}{(n\Omega(n))^{\frac{2-k}{2}}} \left[|a_{nn}|^{\frac{2}{k}-2} \left(n\Omega(n) \right)^{\frac{2}{k}-1} \sum_{j=0}^{n} |\hat{a}_{n,j}|^{2} |c_{j}|^{2} \right]^{\frac{k}{2}} \\ &\leq K \left(\sum_{n=1}^{\infty} \frac{1}{(n\Omega(n))} \right)^{\frac{2-k}{2}} \left[\sum_{n=1}^{\infty} |a_{nn}|^{\frac{2}{k}-2} \left(n\Omega(n) \right)^{\frac{2}{k}-1} \sum_{j=0}^{n} |\hat{a}_{n,j}|^{2} |c_{j}|^{2} \right]^{\frac{k}{2}} \end{split}$$

$$\leq K \left\{ \sum_{j=1}^{\infty} |c_{j}|^{2} \sum_{n=j}^{\infty} |a_{nn}|^{\frac{2}{k}-2} \left(n\Omega(n) \right)^{\frac{2}{k}-1} |\hat{a}_{n,j}|^{2} \right\}^{\frac{k}{2}}$$

$$\leq K \left\{ \sum_{j=1}^{\infty} |c_{j}|^{2} \left(\frac{\Omega(j)}{j} \right)^{\frac{2}{k}-1} \sum_{n=j}^{\infty} n^{\frac{2}{k}} |na_{nn}|^{\frac{2}{k}-2} |\hat{a}_{n,j}|^{2} \right\}^{\frac{k}{2}}$$

$$= K \left\{ \sum_{j=1}^{\infty} |c_{j}|^{2} \Omega^{\frac{2}{k}-1}(j) \mathcal{H}^{(k)}(A;j) \right\}^{\frac{k}{2}},$$

which is finite by virtue of the hypothesis of the theorem, and this completes the proof of the theorem.

For
$$a_{n,v} = \frac{p_{n-v}q_v}{R_n}$$
 we have $a_{n,n} = \frac{p_0q_n}{R_n}$ and
$$\hat{a}_{n,v} = \bar{a}_{n,v} - \bar{a}_{n-1,v}$$

$$= \sum_{j=v}^n a_{nj} - \sum_{j=v}^{n-1} a_{n-1,j}$$

$$= \frac{1}{R_n} \sum_{j=v}^n p_{n-j}q_j - \frac{1}{R_{n-1}} \sum_{j=v}^{n-1} p_{n-1-j}q_j$$

$$= \frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}}$$

therefore the following corollaries follow from the main results:

Corollary 2.1. If for $1 \le k \le 2$ the series

$$\sum_{n=1}^{\infty} \left\{ \left(\frac{R_n}{q_n} \right)^{2 - \frac{2}{k}} \sum_{j=0}^{n} \left(\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}} \right)^2 |c_j|^2 \right\}^{\frac{k}{2}}$$

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable $|N, p, q|_k$ almost everywhere.

Corollary 2.2. Let $1 \leq k \leq 2$ and $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n)/n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)}$ converges. If the following series $\sum_{n=1}^{\infty} |c_n|^2 \Omega^{\frac{2}{k}-1}(n) \mathcal{N}^{(k)}(n)$ converges, then the orthogonal

series $\sum_{n=0}^{\infty} c_n \varphi_n(x) \in |N, p, q|_k$ almost everywhere, where $\mathcal{N}^{(k)}(j)$ is defined by

$$\mathcal{N}^{(k)}(j) := \frac{1}{j^{\frac{2}{k}-1}} \sum_{n=j}^{\infty} n^{\frac{4}{k}-2} \left(\frac{R_n}{q_n}\right)^{2-\frac{2}{k}} \left(\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}}\right)^2.$$

Remark 2.1. We note that for k = 1 corollaries 2.1 and 2.2 reduce in theorems 1.1 and 1.2 respectively.

Let us prove now another two corollaries that follow from the corollary 2.1.

Corollary 2.3. If for $1 \le k \le 2$ the series

$$\sum_{n=0}^{\infty} \left(\frac{p_n}{P_n^{1/k} P_{n-1}} \right)^k \left\{ \sum_{j=1}^n p_{n-j}^2 \left(\frac{P_n}{p_n} - \frac{P_{n-j}}{p_{n-j}} \right)^2 |a_j|^2 \right\}^{\frac{k}{2}}$$

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} a_n \varphi_n(x)$$

is summable $|N, p|_k$ almost everywhere.

Proof. After some elementary calculations one can show that

$$\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}} = \frac{p_n}{P_n P_{n-1}} \left(\frac{P_n}{p_n} - \frac{P_{n-j}}{p_{n-j}} \right) p_{n-j}$$

for all $q_n = 1$, and the proof follows immediately from Theorem 2.1.

Corollary 2.4. If for $1 \le k \le 2$ the series

$$\sum_{n=0}^{\infty} \left(\frac{q_n^{1/k}}{Q_n^{1/k} Q_{n-1}} \right)^k \left\{ \sum_{j=1}^n Q_{j-1}^2 |a_j|^2 \right\}^{\frac{k}{2}}$$

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} a_n \varphi_n(x)$$

is summable $|\overline{N}, q|_k$ almost everywhere.

Proof. From the fact that

$$\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}} = -\frac{q_n Q_{j-1}}{Q_n Q_{n-1}}$$

for all $p_n = 1$, the proof follows immediately from Theorem 2.1.

Remark 2.2. For k = 1 corollaries 2.3 and 2.4 are proved earlier in [1] and [2].

References

- 1. Y. Okuyama, On the absolute Nörlund summability of orthogonal series, Proc. Japan Acad. 54, (1978), 113-118.
- $2.\ {\rm Y.\ Okuyama}$ and T. Tsuchikura, On the absolute Riesz summability of orthogonal series, Analysis Math. 7, (1981), 199-208.
- 3. M. Tanaka, On generalized Nörlund methods of summability, Bull. Austral. Math. Soc. 19, (1978), 381-402.
- 4. Y. Okuyama, On the absolute generalized Nörlund summability of orthogonal series, Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165.
- 5. M. A. Sarigöl, On absolute weighted mean summability methods, Proc. Amer. Math. Soc. Vol. 115, No. 1, May 1992.
- $6.\ M.\ A.\ Sarig\"{o}l,$ On some absolute summability methods, Bull. Cal. Math. Soc. Vol. $83,\ (1991),\ 421-426.$
- 7. I. P. Natanson, Theory of functions of a real variable (2 vols), Frederick Ungar, New York 1955, 1961. MR 16-804, 26 # 6309.