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1. Introduction and Preliminaries

Let
P∞

n=0 an be a given infinite series with its partial sums {sn}, and let A =
(anv) be a normal matrix, that is, lower-semi matrix with nonzero entries. By
(An(s)) we denote the A-transform of the sequence s = {sn}, i.e.,

An(s) =
nX

v=0

anvsv.

The series
P∞

n=0 an is said to be summable |A|k, k ≥ 1, [5] if
∞X
n=0

|ann|1−k|An(s)−An−1(s)|k <∞.

In the special case when A is a generalized Nörlund matrix (resp. k = 1), |A|k
summability is the same as |N, p, q|k (resp. |N, p, q|) summability [6] (see [3]).
By a generalized Nörlund matrix we mean one such that

anv =
pn−vqv
Rn

for 0 ≤ v ≤ n,

anv = 0 for v > n,
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where for two given sequences of positive real constants p = {pn} and q = {qn},
the convolution Rn := (p ∗ q)n is defined by

(p ∗ q)n =
nX

v=0

pvqn−v =
nX

v=0

pn−vqv.

When (p ∗ q)n 6= 0 for all n, the generalized Nörlund transform of the sequence
{sn} is the sequence {tp,qn (s)} defined by

tp,qn (s) =
1

Rn

nX
m=0

pn−mqmsm

and |A|k summability reduces to the following definition:
The infinite series

P∞
n=0 an is absolutely summable (N, p, q)k, k ≥ 1, if the series

∞X
n=0

µ
Rn

qn

¶k−1
|tp,qn (s)− tp,qn−1(s)|k

converges (see [6]), and we write in brief

∞X
n=0

an ∈ |N, p, q|k.

Let {ϕn(x)} be an orthonormal system defined in the interval (a, b). We assume
that f(x) belongs to L2(a, b) and

(1.1) f(x) ∼
∞X
n=0

cnϕn(x),

where cn =
R b
a
f(x)ϕn(x)dx, (n = 0, 1, 2, . . . ).

We write

Rj
n :=

nX
v=j

pn−vqv, R
n+1
n = 0, R0n = Rn

and

Pn := (p ∗ 1)n =
nX

v=0

pv and Qn := (1 ∗ q)n =
nX

v=0

qv.

Regarding to |N, p, q| ≡ |N, p, q|1 summability of the orthogonal series (1.1) the
following two theorems are proved.

Theorem .1.1. [4] If the series

∞X
n=0

⎧⎨⎩
nX
j=1

Ã
Rj
n

Rn
−

Rj
n−1

Rn−1

!2
|cj |2

⎫⎬⎭
1
2
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converges, then the orthogonal series

∞X
n=0

cnϕn(x)

is summable |N, p, q| almost everywhere.

Theorem 1.2. [4] Let {Ω(n)} be a positive sequence such that {Ω(n)/n} is
a non-increasing sequence and the series

P∞
n=1

1
nΩ(n) converges. Let {pn} and

{qn} be non-negative. If the series
P∞

n=1 |cn|2Ω(n)w(1)(n) converges, then the
orthogonal series

P∞
n=0 cnϕn(x) ∈ |N, p, q| almost everywhere, where w(1)(n) is

defined by w(1)(j) := j−1
P∞

n=j n
2

µ
Rjn
Rn
− Rjn−1

Rn−1

¶2
.

The main purpose of this paper is studying of the |A|k summability of the
orthogonal series (1.1), for 1 ≤ k ≤ 2, and to deduce as corollaries all results of
Y. Okuyama [4]. Before doing this first introduce some further notations.
Given a normal matrix A := (anv), we associate two lower semi matrices Ā :=
(ānv) and Â := (ânv) as follows:

ānv :=
nX
i=v

ani, n, i = 0, 1, 2, . . .

and
â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . .

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively.
The following lemma due to Beppo Levi (see, for example [7]) is often used in
the theory of functions. It will need us to prove main results.

Lemma 1.1. If fn(t) ∈ L(E) are non-negative functions and

(1.2)
∞X
n=1

Z
E

fn(t)dt <∞,

then the series ∞X
n=1

fn(t)dt

converges almost everywhere on E to a function f(t) ∈ L(E). Moreover, the
series (1.2) is also convergent to f in the norm of L(E).

Throughout this paper K denotes a positive constant that it may depends only
on k, and be different in different relations.
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2. Main Results

We prove the following theorem.

Theorem 2.1. If for 1 ≤ k ≤ 2 the series

∞X
n=1

⎧⎨⎩|ann| 2k−2
nX
j=0

|ân,j |2|cj |2
⎫⎬⎭

k
2

converges, then the orthogonal series

∞X
n=0

cnϕn(x)

is summable |A|k almost everywhere.

Proof. For the matrix transform An(s)(x) of the partial sums of the orthogonal
series

P∞
n=0 cnϕn(x) we have

An(s)(x) =
nX

v=0

anvsv(x) =
nX

v=0

anv

vX
j=0

cjϕj(x)

=
nX
j=0

cjϕj(x)
nX

v=j

anv =
nX
j=0

ānjcjϕj(x)

where
Pv

j=0 cjϕj(x) is the partial sum of order v of the series (1.1).
Hence

∆̄An(s)(x) =
nX
j=0

ānjcjϕj(x)−
n−1X
j=0

ān−1,jcjϕj(x)

= ānncnϕn(x) +
n−1X
j=0

(ān,j − ān−1,j) cjϕj(x)

= ânncnϕn(x) +
n−1X
j=0

ân,jcjϕj(x) =
nX
j=0

ân,jcjϕj(x).

Using the Hölder’s inequality and orthogonality to the latter equality, we have
thatZ b

a

|∆̄An(s)(x)|kdx ≤ (b− a)
1− k

2

ÃZ b

a

|An(s)(x)−An−1(s)(x)|2dx
!k

2

= (b− a)1−
k
2

⎛⎜⎝Z b

a

¯̄̄̄
¯̄ nX
j=0

ân,jcjϕj(x)

¯̄̄̄
¯̄
2

dx

⎞⎟⎠
k
2
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= (b− a)
1− k

2

⎡⎣ nX
j=0

|ân,j |2|cj |2
⎤⎦k

2

.

Thus, the series

(2.1)
∞X
n=1

|ann|1−k
Z b

a

|∆̄An(s)(x)|kdx ≤ K
∞X
n=1

⎧⎨⎩|ann| 2k−2
nX
j=0

|ân,j |2|cj |2
⎫⎬⎭

k
2

converges by the assumption. From this fact and since the functions |∆̄An(s)(x)|
are non-negative, then by the Lemma 1.1 the series

∞X
n=1

|ann|1−k|∆̄An(s)(x)|k

converges almost everywhere. This completes the proof of the theorem.

If we put

(2.2) H(k)(A; j) :=
1

j
2
k−1

∞X
n=j

n
2
k |nann|

2
k−2|ân,j |2

then the following theorem holds true.

Theorem 2.2. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

P∞
n=1

1
nΩ(n) converges. If

the following series
P∞

n=1 |cn|2Ω
2
k−1(n)H(k)(A;n) converges, then the orthogo-

nal series
P∞

n=0 cnϕn(x) ∈ |A|k almost everywhere, where H(k)(A; j) is defined
by (2.2).

Proof. Applying Hölder’s inequality to the inequality (2.1) we get that

∞X
n=1

|ann|1−k
Z b

a

|∆̄An(s)(x)|kdx ≤

≤ K
∞X
n=1

|ann|1−k
⎡⎣ nX
j=0

|ân,j |2|cj |2
⎤⎦k

2

= K
∞X
n=1

1

(nΩ(n))
2−k
2

⎡⎣|ann| 2k−2 (nΩ(n)) 2k−1 nX
j=0

|ân,j |2|cj |2
⎤⎦ k

2

≤ K

Ã ∞X
n=1

1

(nΩ(n))

! 2−k
2

⎡⎣ ∞X
n=1

|ann|
2
k−2 (nΩ(n))

2
k−1

nX
j=0

|ân,j |2|cj |2
⎤⎦ k

2
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≤ K

⎧⎨⎩
∞X
j=1

|cj |2
∞X
n=j

|ann|
2
k−2 (nΩ(n))

2
k−1 |ân,j |2

⎫⎬⎭
k
2

≤ K

⎧⎨⎩
∞X
j=1

|cj |2
µ
Ω(j)

j

¶ 2
k−1 ∞X

n=j

n
2
k |nann|

2
k−2|ân,j|2

⎫⎬⎭
k
2

= K

⎧⎨⎩
∞X
j=1

|cj |2Ω
2
k−1(j)H(k)(A; j)

⎫⎬⎭
k
2

,

which is finite by virtue of the hypothesis of the theorem, and this completes
the proof of the theorem.

For an,v =
pn−vqv
Rn

we have an,n =
p0qn
Rn

and

ân,v = ān,v − ān−1,v

=
nX

j=v

anj −
n−1X
j=v

an−1,j

=
1

Rn

nX
j=v

pn−jqj −
1

Rn−1

n−1X
j=v

pn−1−jqj

=
Rj
n

Rn
−

Rj
n−1

Rn−1

therefore the following corollaries follow from the main results:

Corollary 2.1. If for 1 ≤ k ≤ 2 the series

∞X
n=1

⎧⎨⎩
µ
Rn

qn

¶2− 2
k

nX
j=0

Ã
Rj
n

Rn
−

Rj
n−1

Rn−1

!2
|cj |2

⎫⎬⎭
k
2

converges, then the orthogonal series

∞X
n=0

cnϕn(x)

is summable |N, p, q|k almost everywhere.

Corollary 2.2. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

P∞
n=1

1
nΩ(n) converges. If

the following series
P∞

n=1 |cn|2Ω
2
k−1(n)N (k)(n) converges, then the orthogonal
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series
P∞

n=0 cnϕn(x) ∈ |N, p, q|k almost everywhere, where N (k)(j) is defined
by

N (k)(j) :=
1

j
2
k−1

∞X
n=j

n
4
k−2

µ
Rn

qn

¶2− 2
k

Ã
Rj
n

Rn
−

Rj
n−1

Rn−1

!2
.

Remark 2.1. We note that for k = 1 corollaries 2.1 and 2.2 reduce in theorems
1.1 and 1.2 respectively.

Let us prove now another two corollaries that follow from the corollary 2.1.

Corollary 2.3. If for 1 ≤ k ≤ 2 the series

∞X
n=0

Ã
pn

P
1/k
n Pn−1

!k
⎧⎨⎩

nX
j=1

p2n−j

µ
Pn
pn
− Pn−j

pn−j

¶2
|aj |2

⎫⎬⎭
k
2

converges, then the orthogonal series

∞X
n=0

anϕn(x)

is summable |N, p|k almost everywhere.

Proof. After some elementary calculations one can show that

Rj
n

Rn
−

Rj
n−1

Rn−1
=

pn
PnPn−1

µ
Pn
pn
− Pn−j

pn−j

¶
pn−j

for all qn = 1, and the proof follows immediately from Theorem 2.1.

Corollary 2.4. If for 1 ≤ k ≤ 2 the series

∞X
n=0

Ã
q
1/k
n

Q
1/k
n Qn−1

!k
⎧⎨⎩

nX
j=1

Q2j−1|aj |2
⎫⎬⎭

k
2

converges, then the orthogonal series

∞X
n=0

anϕn(x)

is summable |N, q|k almost everywhere.

Proof. From the fact that

Rj
n

Rn
−

Rj
n−1

Rn−1
= − qnQj−1

QnQn−1
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for all pn = 1, the proof follows immediately from Theorem 2.1.

Remark 2.2. For k = 1 corollaries 2.3 and 2.4 are proved earlier in [1] and
[2].
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