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Abstract. In the present paper, we implement the Reduced Differential Trans-
form Method to solve the nonlinear dispersive K(m,n,1) type equations. This
method is an alternative approach which is capable of reducing significantly the
size of calculations unlike the classical differential transformation to overcome
relatively troublesome aspects of perturbation techniques and the Adomian de-
composition method regarding computational simplicity. To illustrate the ap-
plicability of the proposed method, two special types K(2,2,1) and K(3,3,1) of
dispersive equations are discussed. Numerical results have been found in good
agreement with the exact solutions.
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1.Introduction

Searching for the solitary solutions to nonlinear equations plays an important
role in soliton theory. For example, compactons can be described as solitons with
finite wave length or solitons that don’t have exponential tails and they are a
new class of localized solitons for the families of nonlinear dispersive partial
differential equations. There are many examples of nonlinear equations such
as Korteweg-de Vries (KdV) equation, mKdV equation, RLW equation, Sine-
Gordon equation, Boussinesq equation and Burgers’ equation, etc., applicable
in engineering, fluid mechanics, biology, mathematics and physics (for example,
plasma physics and solid state physics). Lots of recent studies have focused
their attentions on the theory of nonlinear problems mentioned above. Wadati
developed solutions to KdV and mKdV equations in [1-3]. Here, we will mention
a simple form of the well known KdV equation:

(1) ut − auux + uxxx = 0.
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The dispersion term uxxx in equation (1) makes the wave form spread. Rosenau
and Hyman [4] presented a class of compactons of nonlinear equations:

(2) ut + (u
m)x + (u

n)xxx = 0, m > 0, 1 < n ≤ 3

which is called fully nonlinear dispersive K(m,n) equations. Solitons and com-
pactons are studied by many approximation techniques such as Adomian de-
composition method [5-7], homotopy perturbation method [8-11], variational
iteration method [12-16], He’s semi inverse method [17], Differential Transform
Method [18], Multi-step Differential Transform method[19] and Exp function
method [20-22], etc.
In this paper, we will apply the semi-functional or reduced differential trans-
form method (RDTM) [23,24] to solve the nonlinear dispersive K(m,n, 1) type
equations:

(3) ut + (u
m)x − (un)xxx + u5x = 0, m > 1, 1 ≤ n ≤ 3,

with the initial condition

(4) u(x, 0) = f(x).

In particular, the proposed method is discussed for two special types ofK(m,n, 1)
equations. It is also noted that throughout the paper, all calculations are exe-
cuted in Maple package programming environment.

2. Analysis of the Method

This method is first proposed by Keskin and Oturanc in [23]. The basic de-
finitions of Reduced Differential Transform Method [23-25] are introduced as
follows:

Definition 2.1. Let the function u (x, t) is analytic and continuously differen-
tiable with respect to time t and space x in the domain of the interest, then
let

(5) Uk(x) =
1

k!

∙
∂k

∂tk
u(x, t)

¸
t=0

,

where the t-dimensional spectrum function Uk(x) is the transformed function.
In this paper, the lowercase u (x, t) represents the original function while the
uppercase Uk(x) stands for the transformed function.

Definition 2.2. The differential inverse transform of Uk(x)is defined as follows:

(6) u (x, t) =
∞X
k=0

Uk(x)t
k.
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Then combining equations (5) and (6), we write

(7) u (x, t) =
nX

k=0

1

k!

∙
∂k

∂tk
u(x, t)

¸
t=0

tk.

From the above definitions, it can be found that the concept of the reduced
differential transform is derived from the power series expansion.
For the purpose of illustration of the methodology by the proposed method,
we write the nonlinear dispersive K(m,n, 1) equation in the standard operator
form

(8) L (u(x, t)) +R (u(x, t)) +N (u(x, t)) = g(x, t),

with the initial condition

(9) u(x, 0) = f(x),

where L = ∂
∂t is a linear operator, N (u(x, t)) = (u

m)x − (un)xxx is a nonlinear
term, R (u(x, t)) = u5x is a remaining linear term and g(x, t) is a homogeneous
term. Some basic operations of the RDTM are given in Table 1 that shows the
procedure of a Maple code for the nonlinear part of eq. (8) in its last row.
According to the table 1, we can develop the following iteration formula:

(10) (k + 1)Uk+1(x) = Gk(x)−R (Uk(x))−N (Uk(x)) ,

where R (Uk(x)) , N (Uk(x)) and Gk(x) are the transformations of the func-
tions R (u(x, t)) , N (u(x, t)) and g(x, t) respectively. We can write the first few
nonlinear terms as

N0 =
³

∂
∂xU

m
0 (x)− ∂3

∂x3U
n
0 (x)

´
,

N1 =
³

∂
∂xmUm−1

0 (x)U1(x)− ∂3

∂x3nU
n−1
0 (x)U1(x)

´
,

N2 =

µ ∂
∂x

¡
m(m− 1)Um−2

0 (x)U1(x) +mUm−1
0 (x)U2(x)

¢
− ∂3

∂x3

¡
n(n− 1)Un−2

0 (x)U1(x) + nUn−1
0 (x)U2(x)

¢ ¶ .

The transformation of the initial condition (9) gives

(11) U0(x) = f(x),

Substituting (11) into (10) and after recursive calculations, we get the coeffi-
cients Uk(x) (k = 1, 2, . . .). Then, the inverse transformation of the set of values
{Uk(x)}∞k=0 gives an approximate solution as,

(12) ũn(x, t) =
nX

k=0

Uk(x)t
k +<n+1(x, t),

where

<n+1(x, t) =
∞X

k=n+1

Uk(x)t
k
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is called a remainder and n shows the order of the approximation. Therefore
it is possible to get the exact solution of the problem by

(13) u(x, t) = lim
n→∞

ũn(x, t),

Table 1. Operations of reduced differential transformation

3. Applications

In this section, two examples K(2, 2, 1) and K(3, 3, 1)of nonlinear dispersive
equations are chosen to illustrate the procedure of the RDTM. The results are
compared with the Adomian solutions and those of the Variational iteration
method to appreciate the efficiency and the effectiveness of the proposed scheme.

3.1. Example. Let us consider the nonlinear dispersive K(2, 2, 1)equation

(14) ut + (u
2)x − (u2)xxx + u5x = 0,
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with the initial condition

(15) u(x, 0) =
16c− 1
12

cosh2(
x

4
),

where c is an arbitrary constant. Applying the reduced differential transform
to (14), we obtain the recurrence equation

(16) (k + 1)Uk+1(x) =
∂3

∂x3
Nk(x)−

∂

∂x
Nk(x)−

∂5

∂x5
Uk(x),

where Uk(x) is the t-dimensional spectrum function of u(x, t) and Nk(x) is the
transformation of the function u2(x, t). From the initial condition (15), we can
write the initial transformation term

(17) U0(x) =
16c− 1
12

cosh2(
x

4
).

Substituting the initial transformation (17) in (16), we get the coefficientU1(x).
Therefore, successive substitutions of Uk(x) (k = 1, 2, . . .) in (16) give the re-
quired coefficients as

U0(x) =
16c− 1
12

cosh2(
x

4
)

U1(x) = − 1
24

c(16c− 1) cosh(x
4
) sinh(

x

4
)

U2(x) =
1

192
c2(16c− 1)

³
2 cosh2(

x

4
)− 1

´
U3(x) = − 1

576
c3(16c− 1) cosh(x

4
) sinh(

x

4
)

U4(x) =
1

9216
c4(16c− 1)

³
2 cosh2(

x

4
)− 1

´
U5(x) = − 1

46080
c5(16c− 1) cosh(x

4
) sinh(

x

4
)

U6(x) =
1

1105920
c6(16c− 1)

³
2 cosh2(

x

4
)− 1

´
U7(x) = − 1

7741440
c7(16c− 1) cosh(x

4
) sinh(

x

4
)

...

Then, using the inverse transformation, we get the approximated solution
(18)

ũ(x, t) =
∞P
k=0

Uk(x)t
k =16c−1

12 cosh2(x4 )−
1
24c(16c− 1) cosh(

x
4 ) sinh(

x
4 )t

+ 1
192c

2(16c− 1)
¡
2 cosh2(x4 )− 1

¢
t2 − 1

576c
3(16c− 1) cosh(x4 ) sinh(

x
4 )t

3

+ 1
9216c

4(16c− 1)
¡
2 cosh2(x4 )− 1

¢
t4 − 1

46080c
5(16c− 1) cosh(x4 ) sinh(

x
4 )t

5

+ 1
1105920c

6(16c− 1)
¡
2 cosh2(x4 )− 1

¢
t6 − 1

7741440c
7(16c− 1) cosh(x4 ) sinh(

x
4 )t

7 + ...
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Eventually, it is easy to see the closed form solution of the above series as

(19) u(x, t) =
16c− 1
12

cosh2
µ
ct− x

4

¶
,

which coincides with the exact solution of the problem in [6] and in [13]. For
comparison reasons, the RDTM solution of order seven is plotted together with
the exact solution in Fig.1.a and with the solution of three-term variational
iteration method in Figure 1.b.

3.2. Example. We, now, consider the nonlinear dispersive K(3, 3, 1) equation

(20) ut + (u
3)x − (u3)xxx + u5x = 0,

with the initial condition

(21) u(x, 0) =

r
81c− 1
54

cosh(
x

3
),

where c is an arbitrary constant. Applying the reduced differential transform
to (20), we obtain the recurrence relation

(22) (k + 1)Uk+1(x) =
∂3

∂x3
Nk(x)−

∂

∂x
Nk(x)−

∂5

∂x5
Uk(x),

where Uk(x) is the t-dimensional spectrum function of u(x, t) and Nk(x) is the
transformation of the function u3(x, t). From the initial condition (21), we can
write the initial transformation term

(23) U0(x) =

r
81c− 1
54

cosh(
x

3
).
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Substituting (23) into (22), we find the first term of the approximation. Then,
following the successive substitutions in (22), we get the following Uk(x)(k=1,2,. . . )
values

U0(x) =
1
18

√
486c− 6 cosh(x3 ) U1(x) = − 1

54c
√
486c− 6 sinh(x3 )

U2(x) =
1
324c

2
√
486c− 6 cosh(x3 ) U3(x) = − 1

2916c
3
√
486c− 6 sinh(x3 )

U4(x) =
1

34992c
4
√
486c− 6 cosh(x3 ) U5(x) = − 1

524880c
5
√
486c− 6 sinh(x3 )

U6(x) =
1

9447840c
6
√
486c− 6 cosh(x3 ) U7(x) = − 1

198404640c
7
√
486c− 6 sinh(x3 )

...

Using the inverse transformation, we write the solution in a series form

(24)

ũ(x, t) = 1
18

√
486c− 6 cosh(x3 )−

1
54c
√
486c− 6 sinh(x3 )t

+ 1
324c

2
√
486c− 6 cosh(x3 )t2 −

1
2916c

3
√
486c− 6 sinh(x3 )t3

+ 1
34992c

4
√
486c− 6 cosh(x3 )t4 −

1
524880c

5
√
486c− 6 sinh(x3 )t5

+ 1
9447840c

6
√
486c− 6 cosh(x3 )t6 −

1
198404640c

7
√
486c− 6 sinh(x3 )t7 + · · ·

Therefore, the exact solution of the problem can be given by

u(x, t) = lim
n→∞

ũn(x, t)

and from equation (24), it is easy to verify that the closed form solution can be
written by

(25) u(x, t) =

s
81c− 1
54

cosh

µ
ct− x

3

¶
which coincides with the exact solution of the problem in [6] and in [13]. Even
exact solution of the problem is known, for comparison purposes, the graphical
representation of the RDTM solution of order seven is shown in Figure 2.a
together with the exact solution, and it is also compared with the solution of
three-terms variational iteration method in Figure 2.b.
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4. Conclusion

The main goal of this study is to construct an approximate analytical solu-
tion for the nonlinear dispersive K(m,n, 1)equations. We have achieved this
goal by applying the reduced differential transform method. Two special cases
K(2, 2, 1) and K(3, 3, 1) are chosen to illustrate the effectiveness and efficiency
of the method. Results are compared with analytical solutions, and some ap-
proximation methods such as Adomian decomposition method and variational
iteration method. The main advantage of the RDTM is to provide the user an
analytical approximation to the solution, in many cases, an exact solution in a
rapidly convergent series with elegantly computed terms. By using differential
operators only, RDTM needs small size of computation unlike other numerical
methods and introduces a significant improvement in solving nonlinear disper-
sive equations over existing methods. The solution procedure of the RDTM is
simpler than the classical differential transform method (DTM) and requires
significantly less computational effort. For the initial value problems, RDTM
obtains the solution in an infinite power series which can be easily expressed
in a closed form that is the exact solution of the problem. The results show
that the RDTM is a powerful computational tool for solving nonlinear disper-
sive equations. It is also a promising method to solve other types of nonlinear
equations.
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