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Abstract. Correlation and regression are important tools for empirical research

to establish, justify and describe relations between characteristics. The concepts

stem from a specific historical background and were intended to imitate causal

connections for empirical research in wider areas than physics. While in physics

the rank of causality has been changed drastically by entrenching theoretical

physics models with genuine — randomness, the search for causal relations in

soft sciences is still an ideal. The methods are applied by scientists from other

disciplines than mathematics and statistics who have to interpret them from a

“wider perspective”. However, misunderstandings and misinterpretations about

the concepts involved are also wide-spread even among statisticians. Common

errors and pitfalls with regression and correlation are dealt with to enhance the

concepts.
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1. Issues on Correlation

In empirical research there is a strong need for concepts to investigate inter-

relations between variables. The mathematics of such concepts might be very

sophisticated, especially in multidimensional problems. For those who apply

statistical methods, inner-mathematical derivations become meaningless. Yet

it is important that such people also get some comprehension of the involved

concepts and that they can decide their use and evaluate the results accordingly.

In this section we will illustrate that a correlation coefficient is hard to interpret.

There are subsidiary ways to give at least an idea that the kind of coefficient is

helpful to judge the strength of co-relation of two variables.
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1.1. Explorations about the Value of the Correlation Coefficient

We will start from scatter plots to demonstrate that the usual correlation co-

efficient is hard to tell from the graphs. ANSCOMBE (1973) has given several

data-sets for illustrative purpose. His graphs are useful and have been cited

quite often. Nowadays, with the help of software, insights about the correlation

coefficient might be gained interactively, in changing some data, trace the ef-

fect on the scatter plot and see immediately also the impact on the correlation

coefficient and the best fitting line for the relation.

In applications, such a correlation coefficient is statistically tested for signifi-

cance and if it is significant different from 0, a relation between the variables

involved is “established”. Such a test is important to find relations in empiri-

cal investigations. Beyond such a test, it is important to interpret the size of

a correlation to judge whether it is relevant for further investigations. That

means, the scientist has to get a feeling what different sizes of correlation do

mean for him and how he can evaluate the relations between the variables from

the context.

For an experiment to enhance such judgements, we can start without technical

details such as a definition of . We just tell the students, that such a coefficient,

called (Pearson Bravais) correlation coefficient  is used by statisticians as a

measure of linear co-relation of two variables. Furthermore, such a coefficients

takes values only in the interval [—1, 1] with a monotonic scale, ie. the greater

the absolute value of , the higher the correlation; if data are situated along

a perfectly increasing line, this would lead to =1, while data along perfectly

decreasing line would lead to =—1. However, the coefficient has no metric scale

so that =0.4 does not mean the double correlation of =0.2.

We use a spreadsheet for our calculations. The data set is simple, its purpose is

simply to demonstrate that some scatter plots may be handled with correlation

and some might need further concepts. One of the points in Fig. 1 (to the right)

is moved (by rulers) and the impact on the correlation and the best fitting line is

shown in the scatter plot. In Fig. 1a we see a strong influence of points far out

of the bulk of points. It influences not only the size of the correlation but also

the fitting line for the relation. In Fig. 1b, firstly there is no relation between

the main part of the data; however, the point outside “creates” sometimes a

high correlation.
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Fig.1a. A single point may strongly influences  and the regression line
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Fig.1b. A single point may “produce” a non-existent “relation”

We end this phase of exploration with the insight: The correlation coefficient 

might measure the strength of correlation only if the data points form a scatter

without gaps, with the same vertical scatter throughout. Otherwise,  might

lose completely its meaning.

1.2. Standardized Scatter Plots

From the experiment in Fig. 1, we see that it is important, always to inspect

the scatter gram of data to have a control on the values of  and their relevance.

We need to calibrate our feeling about how to estimate from scatter plots.
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Fig.2. How big are the correlation coefficients in the various scatter plots?

The author used this set of scatter plots at various instances with statistical

experts as well as with students or teachers of secondary schools and asked for

an estimate. The estimates varied for the different plots but were remarkably

similar for the different groups: 0.2—0.3 for the left and 0.9—0.95 for the right in

the second row marked the extremes of the estimates given.

However, all the scatter plots do — in fact — represent the same data set with

a correlation of =0.75. It was a big surprise, also to statisticians to learn to

know how influential the graphical appearance is. In their visual estimates, ex-

perts were no better than laypersons or students from several studies (including
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mathematics and statistics). One needs to standardize scatter plots if  is to be

estimated from the graph, or if the plots are communicated to applied scientists

whom the statistician counsels to avoid confusion. Hereby the scales have to

be chosen in the right proportions, ie., 1 unit on the  axis amounts to 1;

likewise 1 unit on the axis equals 1. By this choice, the dots for the points

fill roughly a rectangle in the scatter plot. To calibrate one’s visual estimation,

it is helpful to have some standardized scatter plots in mind.
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Fig.3.Thre efictional data sets with differing correlation to calibrate

the visual estimation of .

1.3. Co-Relation of Standard Scores

The idea of co-relation between to metric variables might be enhanced by the

use of standardized scores ( values). For data  with mean ̄ and standard

deviation , standard scores are defined usually as

 =
−̄


Indirectly, ranks may be read off from  values (ideally in normal distributions).

In terms of  values,  = + 2 eg., is 2 standard deviations above the mean

and (in normal distributions) this has a small probability of less than 2.5%.

Whether a data of an object is “extreme” may be read off from the pertinent

standard score. In comparing whether the two variables under scrutiny co-relate,

one may ask: Is the object as extreme on the  variable as it is extreme on the

 variable? Or, are the standard scores of the two variables for this object of

similar value, ie. does it hold

 − ̄


≈  − ̄


?

In fact, the co-relation between the standardized values is exactly the same as it

is for the original variables. This is a substantial property of a suitable measure

of co-relation. Standardization should not change its values.
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1.4. Two Interpretations of Correlation

As a question for co-relation has the same answer if put forward for original

data or if put for standardized data, standardized values might be used further

to understand how a concept to measure co-relation is built up.

For the new coordinates  and  in Fig. 4b, one may mention that these are

identical to the two orthogonal components of a principal component analysis

— the first is identical with  in case of  positive, and identical to  in case of

 negative (see eg. HUCK et al, 2007).

2. Issues on Regression

Besides the standard regression line, a further line to represent data in a scatter

plot will be re-introduced in this section. This concept, which was used his-

torically before the method of least squares was established, will help to clarify

an often misunderstood phenomenon of regression towards the mean. Also, it

will help to understand the purpose of a regression line and the “shape” of the

predictions. The evaluation of the fit of the best line may be misleading and

the impact of the relation may be over- or underrated if the graphical displays

use arbitrary scales. From normalized plots such an evaluation should be more

reliable.
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2.1. Two Different Lines to Describe Co-Relation: R- and S-Line

Regression is the name for the method of fitting lines (or non-linear functions) to

data in order to describe the general model (trend) for the relation between the

variables involved, or to estimate the values of the dependent variable  from the

known value of the independent variable . The best model is derived by means

of the method of least squares. Again, the mathematical details are beyond

many researchers who use the method of regression in empirical research. To

enhance understanding of the concepts for such researchers, arguments beyond

mathematics may be used. We will take up the historical perspective of de-

veloping the concepts of regression and correlation by Galton and Pearson (see

MACKENZIE, 1981), which has been used also by FREEDMAN et al (2007).

Fig.5.Scatter plots in standardized and original scale of variables

The broken line in Fig. 5 is the usual regression line derived by least squares;

we will name it  line and compare it to the so called  line. This comparison

will shed a light on the nature of the regression line and enhance the formulae

involved.
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2.2. Regression to the Mean

A “natural law” behind naming new concepts

We will write the equations for both prediction models in terms of standardized

values. The equation for the regression line simplifies by  =
 
·  .

s line in standardized variables  line in standardized variables
−
 
− −



−
 
−  −



This makes clear the basic distinction between the two models for prediction: If

the s line is used, then a standard value of 2 in  will lead to a prediction of 

to be of 2 standard deviations above its mean. Using the least squares line, this

prediction will be systematically changed by a factor , which is the regression

coefficient — this coefficient was therefore termed as reversion coefficient by

Francis Galton (see eg., MACKENZIE, 1981). In the historic example of body

length of fathers (the independent variable) and sons (the dependent variable),

this has become known as the law of reversion, or the law of regression: If fathers

are extreme off the mean value — eg., two standard deviations above — then their

sons tend to be taller than average; but their length will be less extreme than

their fathers’: they regress towards the mean.

This was coined to be a major law of nature and a sign of heredity. By the

way, the concepts of correlation and regression were developed to prove that —
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besides body length, intelligence is hereditary. Such a phenomenon was advo-

cated as an argument to foster intelligent persons to bring up children. While

historically, this erroneous perception of regression played an important role for

its promotion, the phenomenon of regression towards the mean should be now

clear as an artefact: It holds for all variables under scrutiny. The slope of the

regression line between standardized values for both variables is always less than

1!

Special case of regression to the mean — the case of equal variances for both

variables

In case the variation of both variables is identical, ie., if it holds

 = 

the phenomenon of “regression” towards the mean may already be read off the

data in the original scale as it holds then:

 − ̄ =  · (− ̄)

The variances of both variables may be equal (but need not be) in the case of

a test-retest situation. The slope of the regression line equals  and as ||  1,
the  values tend to be less extreme than the  values on the original scale in

this case.

2.3. Standardized Plots Also With Regression Analysis

The impact of the strength of a relation is twofold: Firstly, the regression coef-

ficient  gives a confirmation that such a relation is worthwhile as a model to

describe the co-relation; also, the higher , the more precise predictions will be.

Secondly, the slope of the regression line influences the “grade” of dependence:

for a steep slope the predictions will be highly influenced by changes in the in-

dependent variable. Again, we will illustrate that the visualization may mislead

if scatter plots are arbitrarily scaled.

A study should analyze the effect of TV consumption on the length of deep

sleep phase.

Two scatter plots with different scales for the given data induce differing aware-

ness of correlation and regression coefficients. The effect of chosen scales is

enlarged if the regression lines are drawn.
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Fig. 7a. The scales used influence the impression

of the influence of the independent variable
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Fig. 7b. The effect of scales is increased

if the regression line is also displayed

If coefficients are interpreted from scatter plots, the plots should be standardized

again.

A graph — approximately standardized — shows the effect (Fig. 7c): High cor-

relation - high increment. The coefficients confirm the visual impression as

nearly 45% of the variation of the dependent variable may be explained by the

independent variable:
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Fig.7c. Standardized plots reveal the relation of

quite high correlation and high increment.

3. Back to Correlation

The split of sums of squares total into a sum related to the model and a sum

related to residuals (errors) is basic for several statistical procedures. It paves

the way for deriving statistical tests for the model and testing for significance

for its parameters. It discloses also the term of variance (variation) explained

by the model, which is substantial for empirical researchers in their judgement

of the results for their contextual questions. However, usually this is proven

generally, in mathematical terms, which hinders more than it gives an insight

for those who are mathematically less inclined. This variance split will here be

motivated by a special data set and simple techniques of data analysis. All the

sums will get a concrete meaning thereby. A corroboration of the result might

be gained by changing the data set purposefully. The remainder of this section

will encounter some pitfalls, which are very frequent in empirical research. The

discussion of interpreting correlation will also include items about causality,

which is so different from correlation but is always in a researcher’s mind

3.1. The Variance Split for Interpreting Correlations

The split of variances into an explained sums of squares (explained by the used

model) and a residual sums of squares is highly important, not only for theoret-

ical purpose but also for the interpretation of concepts used for the researcher

who applies them. Again, for many researchers using regression and correlation

in various fields, a mathematical argument is hardly convincing. We will estab-

lish the variance split using a simple data set. To corroborate the finding, the

data may be systematically changed (by a slide in the spreadsheet used) with

the result that the additive split remains invariant. In this experiment, we will

use two different models to predict the value of the dependent variable:
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i) naïve model: ̂ = ̄; independently of  the mean value of  will be

used as a prediction;

ii) linear model (least square): ̂ = ̂ + ̂ · ; the point on the regression
line is predicted.

Fig.8a. The additive split of variances: Total variance equals variance

explained+unexplained

The mean value of the  data in Fig. 8a is 4.17; rule i) yields always a prediction

of 4.17. The residuals (errors) of such a prediction have a mean of 0, which is

good (no systematic bias of prediction). However, the variance of this prediction

i) equals the variance of  originally (4.57), which is bad as — compared to the

original data — no improvement is reached at. Using the least squares prediction

ii) gives also a mean value of predicted values of 4.17 (which equals ̄). For the

error of procedure ii) it holds: mean error equals 0.

With regard to the variance of these residuals, we notice a value of 2.89, which

is much smaller than the variance of 4.57 in the original data — a clear sign

of improvement. The variance (interpreted as uncertainty of predicting values)

has improved by 4.57 — 2.89. Inspecting the variance of the fitted points (their

y value, of course), one notes the value of 1.68, which coincides exactly by the

difference for the improvement. It holds

which is the famous additive split of the variances. Usually, statisticians note

this law in the form of “sums of squares” (which form independent chi-square

statistics etc). By simple techniques of data analysis, one may see important
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relations of statistics.

Fig.8b. The additive split of sums of squares

These relations remain stable when some of the data is changed in the spread-

sheet by a slider. This is some kind of confirmation for an applied researcher

who can now appreciate what is meant by variance explained and variance not

explained. Furthermore, a new insight into the correlation coefficient is possible:

To multiply the total variance by2 yields the explained variance:

̂ =  · 2 2 = ̂




ie., the square of the correlation coefficient equals the percentage of explained

variation of the total variation. Such a (determination) coefficient may then also

be defined for non-linear models for prediction by way of this interpretation of

percentage of variation explained by the model used for prediction.

3.2. Some Pitfalls

Finally, we will deal with some examples to illustrate various phenomena related

to the concepts of correlation and regression: Firstly, additive effects of variables

are not shown by correlations. Secondly, if aggregate data are used, correlations

are increased by much and the fit of a relation is strongly suggested. And

thirdly, third variables may enhance or even reverse a relation between two

variables under scrutiny. Always is the question of causality to be analyzed

separately from the statistical analysis.

Effects that correlation misses to capture

Correlation measures co-relation between variables. If the scatter plots are

shifted eg., upwards, the mean value of the dependent variable would indicate

this; however, the correlation coefficient does not reflect such a shift. It is
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important to note this as there seems to be some confusion about it. An exam-

ple from FREEDMAN et al (2007) deals with intelligence studies and whether

intelligence is hereditary.

One study of SKODAK and SKEELS (1949) investigate the development of a

co-relation of intelligence between children that have been adopted and their

natural mother as well as to their foster mother in a longitudinal study. At

a young age, correlations of child’s intelligence to mother as well as to foster

mother were small (r  0.1). With ages 4 to 13 this correlation developed

completely differently: while the correlation of child to natural mother became

larger than 0.3, the correlation to fostering mother remained small; in fact it

increased to 0.1 and 0.15 at age 13. This suggests that the child develops an

intelligence that is much more closely related to its natural mother and much

less to its fostering mother. A further study by HONZIK (1957) confirms this

connection indirectly. It deals with the development of the correlation between

intelligence of a child with its natural mother when the child was reared by its

natural mother; see the dashed curve in Fig.9.

Fig.9. Development of intelligence between children and

natural and fostering mothers

And, surprisingly or not, the correlation curve over the ages of the child develops

quite similarly to the SKODAK and SKEELS study (see the two upper curves

in Fig. 9). From this one may conclude that the intelligence of a child develops

in some connection to its natural mother whether is reared by its own mother

or it is fostered by an adoptive mother. Is intelligence mainly hereditary? Are
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influences from the educational environment not strong enough? Is an influence

of this educational environment completely missing?

It is interesting to note that despite the small correlation of children to fostering

mothers, the influence of the adoption is relevant and high — however, it is not

captured by the correlation coefficient: the natural mothers of those children

who were adopted had an IQ of 86 while their children had an IQ of 106 so

that they gained 20 points on average. Such an additive influence is not shown

by correlations — and the summary of the investigation is based on the change

of correlation coefficients (between intelligence of child and mother respectively

fostering mother) with age of the child. The additive impact of enviroment to

intelligence development is not reflected by correlation. There still remains the

question of how to explain this increase of 20 points. Is it due to the supportive

environment of the adopted child? Or, is it simply due to a selective process as

only the brighter babies have been adopted?

Ecological correlations

If the correlation between variables is based on rates or averages, the term

ecological correlation is in use. Such an aggregate analysis always increases the

correlation coefficient and let the best line fit much better as compared to an

analysis based on original data. FREEDMAN et al (2007) gives an example

based on data about income and education level (using 1970 census data). If

income is related to educational level for original data, the correlation is 0.4.

However, if the data are aggregated over nine geographic regions, the correlation

increases to 0.7.

Fig.10a.Education and income Fig.10b.Aggregate data for

-original data 3 regions

A fictional example (going back to FREEDMAN et al 2007) should illustrate

matters: For original data, the correlation is 0.488 and the fit is quite reasonable,

Fig. 10a). If the data are hypothesized to be from three regions and averages

are taken, the scatter plot with the averages shows a perfect fit, Fig. 10b. The

fit to single regions shows no uniform pattern for the relation between income

and educational level, the correlation has gone down to values 0.109, 0.311, and
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-0.128 (from left to right in Fig. 10c).

Fig.10c. Different relation in the 3r egions

The investigation of aggregate data is very popular in political sciences or in

sociology as original data are missing in many cases (an early example about

smoking causing cancer is DOLL 1957). The effect of such an approach should

be clear and relations found have to be clarified by further investigations. The

results come more close to preliminary hypotheses than they resemble findings

from the study.

Third variables

An investigation of the initial income of academic persons (see KRÄMER 2007)

has shown a strong relation of the income to the duration of the study, see

Fig. 11. Should one give the advice to students to study longer (perhaps

more carefully) to earn more? At closer scrutiny, the relation falls apart when

one brings into the analysis a third variable, namely the study type. Clearly,

business studies are shorter, physics studies last longer, and it is well-known

that chemistry takes a long time to finish the studies. Across these studies,
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however, the initial income increase highly from business to chemistry.

Fig.11a. First income and Fig.11b. Within studies

study length the relation is reversed

Within the studies, the relation between study length and income is reversed.

The longer the students take their time to finish the study, the lower the income

at the start of the career. Third variables might enhance, blur, or even reverse

a relation. The case of reversing the relation is also known as Simpson paradox.

Fig.12a. A strong influence of Fig.12b. Two time-related

storks to births? variables co-relate

Often the hidden variable is just time as shown in Fig. 12. Two time-series

correlated to time are also correlated together. Clearly, we know that “the

stork does not bring the babies” as may — at first sight — be concluded from

the strong correlation between the numbers of storks and the new-borns in

Western Germany for the years 1965—80 (see SIES, 1988, for this nice example).

Sometimes, however, researchers are erroneously induced to think about causal

relations between the variables under scrutiny if a correlation is higher (and

with the storks and the babies it is higher than 0.983).
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4. Summary — Correlation and Causality

The properties of correlation and regression discussed here are not new. The

difficulties for understanding the underlying concepts and the restrictions on the

interpretation of findings in applications are well-known. The twist here is to

focus on a comprehension beyond mathematical justification, which is important

for empirical researchers whose prime interest is their scientific discipline in

which they work; they might also lack profound mathematical background. Yet

they have to orientate themselves about the potential of the used statistical

concepts. To enhance the meaning of the methods and to improve the capability

to evaluate the findings, explorations of the effect of the used concepts might

be more promising than further mathematical explanations:

• Many of the relations need not be played to the end mathematically.

• Exploration might help to orientate.

• Mathematical concepts always have two sides, they can clarify or blur.

• For applications, inner-mathematical relations get less important.

• Some of the explorations might be done interactively, we used EXCEL.

There is a final caveat: Correlation cannot “measure” causality of the phenom-

enon.

• Statistical laws orientate at the external phenomenon: data vary, or

co-relate.

• Causal laws refer to the internal mechanism of connections: why data

“influence” each other?

Once, a correlation is found to be significant and its size is judged to be relevant,

further investigations have to be undertaken: replication studies should show

that the phenomenon is stable; the search for contextual connections between

the variables under scrutiny has to be pursued with detective care and persis-

tence. If time related variables correlate with each other, an obvious co-factor

is time. As was seen with the storks’ example, such a correlation per se has

no meaning and it is not always so obvious that a causal connection is absurd.

All too easily a researcher is tempted to cross the line between statistical co-

relation and causation as the latter always gives a much more attractive and

acknowledged research finding.

Other co-factors may influence both variables. In the TV example, eg.,

• a factor of “un-quietness” might let these people look more at TV (to

“relax”)

• and these people might have shorter periods of deep sleep during night.

To clarify issues by further analyses, it is important to consider such co-factors

early in the study otherwise pertinent data will be missing. The third variable

or co-factor in the example with the income and study length was the discipline.

After it is introduced in the analysis, the co-relation breaks down. The search

for such co-factors is the key of empirical research and resembles more to an art

and expertise knowledge about the context than it is connected to statistical

expertise. If all potential co-factors are excluded, the task still remains to give

a contextual explanation for a high correlation found.
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GOOD and HARDIN (2003), or KHARSIKAR and KUNTE (2002) illustrate

further pitfalls and how to deal with them. GOLDACRE (2008) analyses com-

mon errors in the approach within medical sciences. There is no statistical

substitute for such arguments based on knowledge from the discipline. That

makes the communication between the statistical advisor and the expert from

the discipline so important.
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