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Abstract. There are various statistics to measure the degree of association

between qualitative variables in literature. Among them, some to mention are

Pearson p ( the coefficient of contingency), phi-square, Tschuprow’s contingency

coefficient, and Cramér’s contingency coefficient. In addition, statistics derived

from the concept of entropy like mutual information, Kullback-Leibler diver-

gence and Jeffreys divergence can also be used in measuring association.
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1. Introduction

In literature, there are some statistics developed to measure the degree of asso-

ciation between qualitative variables. These statistics are mainly derived from

the chi-square value calculated for a contingency table. Besides, some statistics

based on entropy measures are widely used to measure qualitative association.

Infact statistical entropy empowers scientists quite a lot in attacking some prob-

lems especially when the distribution is in qualitative nature. One can consult

[4] and [5] on some applications of entropy in statistics. In this study, we intend

to compare entropy-based association measures with other qualitative associa-

tion measures by means of two different applications.

2. Measures of Association for Qualitative Variables

Suppose the joint frequency distribution of two qualitative variables is summa-

rized by a contingency table. Let the first variable is denoted by (i=1,2,. . . ,n)

whereas the second variable is denoted by (j=1,2,. . . ,m). Suppose also that
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 ( =   = ) represents the values of this joint distribution and also

that and  represent observed and expected frequencies of  values .

Note that N stands for the total number of observations. Then

(1)

X X
=1

 =

X
=1

X
=1

 = 

(2)  ( = ) =  =
1



P
=1



(3)  ( = ) =  =
1



P
=1



(4)  ( =   = ) =  =





The sufficient condition for independence is that for all  = 1 2      and

 = 1 2    

(5)  =  

To measure the degree of association, phi-square statistic is defined as

(6) 2


=
P
=1

P
=1

2


− 1

This measure takes 0, if the variables are independent. The maximum value

it can take is q-1. It should be noted that q=min {}  For this reason the
ratio

2

 − 1can serve as a “standardized”
1association index. This statistic is

0, when there is no association between the variables and also it is equal to 1

when there is perfect association between them [9]. The maximum likelihood

estimators of the probabilities    and  that appear in (5) can be found by

maximizing the likelihood function based on a sample of N units. If L represents

the likelihood function then

(7)  =
Y


()
 

Here
P
=1

 = 1 ,
P
=1

 = 1 and the quantity LogL-
P
=1

 − 
P
=1

 is

maximized for

(8)  =
1



P
=1



1 i.e. its minimum value is 0 and maximum value is 1. The term “standardized” here is

used somewhat in a different meaning from “standardized variables” in statistics.
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(9)  =
1



P
=1

 

Thus maximum likelihood estimators satisfy  = 

(10) 2 =
P
=1

P
=1

( − )
2



fits approximately a chi-square distribution with (n-1)(m-1) degrees of freedom.2

(11) 2 =
P
=1

P
=1

( −)
2




After manipulating algebraically a little bit;

(12) 2 = 

Ã
P
=1

P
=1

()
2


− 1
!

(13) 2 =
2




When the variables are independent this statistic is equal to 0. Because this

statistic depends on the number of cells in the contingency table, there is a

difficulty in evaluating the numeric values obtained. For that reason further

modifications seem necessary [9].

2.1. Some Modifications

To overcome the difficulty just mentioned above, Pearson proposed the following

statistic:

(14)  =

µ
2

1 + 2

¶12


Here p takes values between 0 and 1. Yet this statistic suffers from the fact

that although the variables seem perfectly associated, p can not be equal to 1

exactly. In a multinomial sampling scheme, if ̂ represents the maximum

likelihood estimator of p, then

2Chi-square approach is only valid for limiting cases especially when the number of counts

in each cell are not negligible. If a significant number of cell counts is less than 5, this approach

may highly be misleading (Keeping, p316).
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(15) ̂ =

µ
2

1 + 2

¶12
=

s
2

2


When the number of rows are equal to that of columns in the contingency table,

the maximum value that ̂ can reach is
p
( − 1) , in other cases it can

be less than 1. For this reason some adjustments are proposed in literature. For

instance, Sakoda proposed the following[9]:

(16) ∗ = 



=

µ
2

( − 1)(1 + 2)

¶12


Here , ∗ is equal to 0 when the variables are independent and 1 when they are
associated perfectly.

2.2. Tschuprow’s Contingency Coefficient

Another alternative is Tschuprow’s contingency coefficient . Let T denotes this

coefficient and is defined as

(17)  =

Ã
2p

(− 1)(− 1)

!12
Here T takes values between 0 and 1 as the other association measures. Be-

sides it is important to note that it only achieves its maximum value when the

contingency table is in a square form.

2.3. Cramér’s Contingency Coefficient

As an alternative to p and T statistics, Cramér, proposed the following:

(18)  =

µ
2

 − 1
¶12

=

µ
2

( − 1)
¶12



Here even though the number of columns and the number of rows of the con-

tingency table are not equal to each other,  can still reach its maximum value

when there is perfect association. In such a case it takes the value of 1 [9].

It is very hard to determine the probability distributions of , ∗ , and . Yet
their distributions are determined by large sampling approach only. Under the

assumption of independence
¡
2 = 0

¢
, the following tail probabilities for T can

still be calculated by the help of following equations:
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(19)  ( ≥ 0) =  ( 2 ≥ 20) = 

Ã"
2


p
(− 1)(− 1)

#
≥ 20

!

(20)  ( ≥ 0) = 
h
2 ≥ 20

p
(− 1)(− 1)

i


Tail probabilities for , ∗ and  can be calculated similarly. To calculate the

standard errors of these distributions under the assumption , 2 6= 0 one can

refer to [9]. Since these formulations are rather complicated and maybe clumsy,

we have preferred to skip these.

3. Shannon Entropy

For a discrete probability distribution, Shannon entropy is defined as

(21) (21)  = −
P
=1

 log 

The biggest uncertainty is encountered when each outcome is equally likely. In

that situation the maximum entropy for discrete cases is as below:

(22)  = −
P
=1

1


log(

1


) = log

In the other extreme (minimum uncertainty or minimum entropy) one can cal-

culate it as

(23)  = 0

3.1. Generalizations to Multivariate Cases

For multivariate discrete distributions, the entropy can be found by

(24) (24) (1 ) = −
P
1


P


log ( (1  ))  (1  )

and for multivariate continuous distributions

(25) (1 ) = −
∞Z
−∞



∞Z
−∞

 (1  ) log ( (1  )) 1
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3.2. Conditional Entropies

Suppose   = ( = ) and   = ( = ) represent two con-

ditional probability distributions of X and Y given that  =  and  = 
have occurred respectively. In these cases, the conditional entropies are just the

entropies of these conditional distributions. Thus one can formulate them as

follows:

(26)

( = ) =

= −
P
=1

== ( =  = ) log(== ( =  = ))

(27)

( = ) =

= −
P
=1

==( =  = ) log(==( =  = ))

But these two measure uncertainty only under the assumption that  =  and

 =  have already occurred respectively. So to investigate dependencies

among variables, one can find other formulas for the average situation. From

(26) and (27), more appropriate measures can be obtained by

(28)

( ) =

= −
P
=1

=

P
=1

== ( =  = ) log(== ( =  = ))

or

( ) =

=
P
=1

P
=1

== ( =  = ) log(== ( =  = ))

and similarly,

(29)

() =
P
=1

P
=1

= =( =  = ) log(== ( =  = )) 

3.3. Entropy and Statistical Independence

If X and Y are independent, one can end in

(30) ( ) = ()
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(31) () = ( )

Entropies of different types of distributions (bivariate, univariate, and condi-

tional distributions) are also related to each other. For example,

(32) ( ) = ( ) +( )

(33) ( ) = () +()

3.4. Measure of Mutual Information

A measure of information that one variable gives about the uncertainty of the

other is proposed by C.E. Shannon and it is as follows[15]:

(34) (; ) =
P
=1

P
=1

 ( =   = ) log
 ( =   = )

 ( = ) ( = )


For continuous distributions, summation operators in (34) are replaced by inte-

gration operators. If X and Y are independent, then (; ) = 03 After some

algebraic work,

(35) (; ) = () +( )−( )

(36) ( ) = ()−( )

(37) ( ) = ( )−()

Here it is important to note that mutual information and entropy are two related

concepts.

3This agrees with general expectations or intuition. It is natural to conclude that indepen-

dent variables do not give information about the uncertainties of each other.
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3.5. Some Modifications on Mutual Information

In this context, one can refer to Coombs, Daves & Tversky (1970)4 and Press

& Flannery (1988)5. Among these modifications offered, the followings are

especially important:

(38)  =
(; )

( )

(39)  =
(; )

()

(38) and (39) are not necessarily equal. Therefore a symmetric version is pro-

posed as

(40)  =
(; )

() +( )


This is the coefficient of redundancy. It is zero in case of independence, and

it takes the value of 1
2
in case of dependence implying that half of these two

variables is redundant. Still another dependency measures are as follows:

(; )

min {()( )} 
(; )

( )


(; )p
()( )

(Yao(2003)6, Strehl&Ghosh(2002)7).

3.6. Multivariate Generalizations

Suppose the joint probability function of 12  be (1 2  ) .

The entropy of this joint distribution can be expressed as the sum of entropies

of conditional distributions.

(41)  (12 ) =
P
=1

(−1 1)

For bivariate distributions

(42)  (12) = (1) +(21)

4Coombs, C.H.,Daves,R.M.&Tversky(1970), “Mathematical Psychology: An Elementary

Introduction”, Prentice-Hall,Englewood Cliffs, NJ
5Press, W.H., Flannery, B.P., Teukolsky, S.A.,& Vetterling, W.T.(1988) “Numerical

Recipes in C :The Art of Scientific Computing”, Cambridge University Press, Cambrige,p.634
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Or for trivariate distributions it is straightforward to derive formulas like

(43)  (123) = (1) +(231)

(44)  (123) = (1) +(21) +(312)

Similarly whenever Z is given, the conditional measure of information between

X and Y can be written as

(45) (;) = ()−()

(46) =  () log
 ()

 () ()


Also for mutual information measures one can conclude that

(47) (12 ; ) = (12 )(12  )

(48) =
P
=1

(−1 1)−
P
=1

(−1 1  )

(49) (12 ; ) =
P
=1

(;−1−2 1)

3.7. Kullback-Leibler Divergence8

1 :Probability function is p.

2 :Probability function is q which is different from p ( 6= ) 

According to Kullback and Leibler, the divergence between these two hypotheses

is

(50) (12) = () =
X


() log
()

()


8Kullback-Leibler divergence and Jeffreys divergence do not satisfy the requirements in the

definition of a metric function. For that reason it is customary to use the term divergence

rather than distance.
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This statistic can also be evaluated as the measure of error when one adopts

q instead of p infact 1 is true. Besides this statistic can be seen as the

average amount of information per observation that supports 1[8]. As a

second example, we consider the following alternatives:

1 :X and Y are not independent. (or the joint probability function is

 ( ))

2 :X and Y are independent (for ∀( ) ∈ <2, ( ) = () ()).

In this test, Kullback-Leibler divergence ( ( )  ()  ()) can

be evaluated as the average amount of information per observation that supports

(1). If the bivariate distribution of (X,Y) is jointly continuous

(51)

( ( )() ()) =

∞Z
−∞

∞Z
−∞

 ( ) log

∙
 ( )

() ()

¸


if  = 0 then the following statements are identical:

1) The amount of information from sample that supports 1 is zero.

2) When the variables are independent, the amount of information that one

can obtain for one variable by observing the other variable is zero.

When (X,Y) is jointly and normally distributed, Kullback-Leibler divergence is

found as

(52) ( ( )() ()) = −1
2
log(1− 2)

In bivariate normal distribution, Kullback-Leibler divergence is a function of

linear correlation coefficient  . Of course, this result agrees with intuition.

3.8. Jeffreys Divergence

A symmetric version of Kullback-Leibler divergence is proposed by Jeffreys.

This measure is

(53) () =
X


∙
(()− ()) log

()

()

¸


Here p and q respresents two discrete probability functions. To investigate the

degree of dependence between two continuous variables Jeffreys divergence can

be formulated as
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(54) () =

∞Z
−∞

∞Z
−∞
( ( )− () ()) log

∙
 ( )

() ()

¸


3.9. Asymptotic Properties of  and 

The asymptotic properties of  and  are analysed thoroughly. One can

refer to [8] to have an overall idea of this topic. Suppose that the likelihood

function based on a sample of n units obtained from a qualitative distribution

is given by

(̃) = 
1
1 




where  (i=1,2,. . . ,k) , is the frequency of the category . (
P
=1

 = ) Let

the null and alternative hypotheses are defined as

1 : ̃ = ̃0
2 :  6= 0 (at least for one i )

and the test statistic or the likelihood ratio be

(55) Λ =
(̃0)

(
a
̃)

=


Π
=1



0

()


Here
a
̃; whose components are computed as ̂ =




; is the maximum likelihood

estimate of the probabilities vector ̃. Based on (55) one can calculate the test

statistic

(56) −2 logΛ = −2
P
=1



µ
log(0)− log

µ




¶¶


Here the distribution of −2 logΛ is a chi-square distribution with (k-1) degrees

of freedom, asymptotically. k-1 is the number of parameters whose values can

be estimated freely under the assumption 1 : ̃ = ̃0. Besides it can also be

shown that under the validity of 1 , the distributions of −2 logΛ and 2 are

equal asymptotically [10]. In addition, the statistic

(57) 2̂ = 2

∙Z
( ) log

( )

( 2)
()

¸
=̂
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(under the validity of 1 ) fits a chi-square distribution with k (the number of

components of the parameter vector) degrees of freedom asymptotically. ( )

is the joint probability density function having multiple parameters. ̂ is as-

sumed to be consistent, asymptotically multivariate normal, and efficient ran-

dom estimator of  . Finally, 2 represents the parameter vector specified by

1 and () is a probability measure. Similarly

(58) ̂ = 2

∙Z
(( )− ( 2)) log

( )

( 2)
()

¸
=̂

fits a chi-square distribution with k degrees of freedom asymptotically. A more

detailed discussion on this topic can be found in [9].

3.10. Multinomial Distributions

To test the dependence of two variables in a contingency table, we suppose

1 :  6=   at least one (i,j) (i=1,2,. . . ,n ; j=1,2,. . . ,m)

2 :  =   for all (i,j) (i=1,2,. . . ,n ; j=1,2,..,m)

P
=1

P
=1

 = 1   0  =
P
=1

   =
P
=1



(59) (12) =
P
=1

P
=1

 log




(60) (12) =
P
=1

P
=1

( − ) log




4. Application 1

Figures on people older than 60 years according to Turkish population statistics

in 2007 are taken from [6] for illustration. The contingency table is formed

by categorizing people according to their gender and age. The aim here is

to investigate the dependency of gender and age of the people older than 60

years old in Turkish population. The related distribution and summarizing

qualitative association statistics are given in Table1, Table2 and Table 3. As

can be concluded easily, there is not a significant association between these two

variables.
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Table1. Older Turkish Population in 2007 categorized

according to their age and gender

Age Group Male Female Total

60-64 981178 1086536 2067714

65-69 781165 917418 1698583

70-74 629241 743836 1373077

75-79 441289 628672 1069961

80-84 212383 366496 578879

85-89 58552 123636 182188

90+ 27473 70014 97487

Total 3131281 3936608 7067889

Table2: Association statistics based on chi-square

Chi-square 50415.88

Phi-square 0.007

Pearson p 0.119

Sakoda 0.168

Tschuprow 0.053

Cramér 0.084

Table3: Association statistics based on entropy

H(X) 2.402

H(Y) 0.991

H(X,Y) 3.387

I(X,Y) 0.005

C(X,Y) 0.005

C(Y,X) 0.002

Redundancy 0.001

Kullback-Leibler divergence 0.005

Jeffreys divergence 0.011

5. Application 2

Table 4 is taken from [1]. It is a distribution related to the performance scores

of students coming from some selected public and private schools in a special

entering examination. In this example, the association between the school type

that the students graduate from and the score of that entering exam is studied.

Although exam scores are taken on a continuous scale, these scores are cate-

goried as indicated in Table 4. The distributions of students exam scores and

the type of the school they graduate are given in Table 4. The summarizing

15



statistics for the association between these two variables are given in Table 5

and Table 6. All association statistics (whether they are based on chi-square

value or entropy measures) agree in general.Yet the statistics based on entropy

are lower than those found by chi-square value. The reason for this difference

should probably lie in the fact that in entropy based statistics one has to deal

with logarithmic scales. Therefore this difference should have been originated

from the different methods applied in transforming frequencies.

Table 4: The joint distribution of school type and exam scores

of some selected students

X/Y 0-275 276-350 351-425 426-500 Total

Private school 6 14 17 9 46

Public school 30 32 17 3 82

Total 36 46 34 12 128

X=schooltype, Y=examscore

Table5: Association statistics based on chi-square

Chi-square 17.286

Phi-square 0.135

Pearson p 0.345

Sakoda 0.49

Tschuprow 0.28

Cramér 0.367

Table6: Association statistics based on entropy

H(X) 0.942

H(Y) 1.873

H(X,Y) 2.717

I(X,Y) 0.098

C(X,Y) 0.052

C(Y,X) 0.104

Redundancy 0.035

Kullback-Leibler divergence 0.099

Jeffreys divergence 0.207

6. Conclusion

For a detailed exposition of concepts derived from statistical entropy and their

applications in statistics and probability one can consult [2], [11], [12] and [13].

In this study, we tried to emphasize that entropy based association measures can
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also be used in determining the degree of qualitative association between vari-

ables. Entropy-based association measures can easily be adapted to contingency

tables as well as other statistics used in qualitative association. To compare, if

the variables are independent, then all these measures (whether they are based

on entropy measures or on other measures such as chi-square values) produce

similar results. On the other hand, if the variables are associated to some extent,

entropy-based measures and other measures differ or diverge to some moderate

extent. The reason for this difference might lie in the fact that in entropy-based

measures one uses logarithmic transformations of frequencies (or probabilities)

which probably brings a serious scale change. Finally entropy-based measures

can easily be adapted to multivariate distributions which is a positive factor for

these measures.
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4. Evren A. , Entropinin İstatistik’teki Bazı Uygulamaları, II. Ulusal Konya Ereğli
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