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Abstract. We have studied heat and mass transfer in an unsteady MHD flow

of an incompressible, electrically conducting, and viscous fluid. It is considered

that the influence of the uniform magnetic field normal to the flow. Numerical

results for temperature, velocity, concentration, have been obtained and shown

graphically for suitable parameters like Grashoff number, mass Grashoff number,

Prandtl number and Schmidt number. Rate of heat transfer and mass transfer

are studied. The results obtained are discussed with the help of graphs and

tables to observe effect of various parameters concerned in the problem under

investigation. The main conclusions of this study have been given.
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1. Introduction

Investigation of magneto-hydrodynamic (MHD) flow for an electrically conduct-

ing fluid past a heated surface has attracted the interest of many researchers

in view of its important applications in many engineering problems such as

plasma studies, petroleum industries, MHD power generators, cooling of nu-

clear reactors, the boundary layer control in aerodynamics, and crystal growth.

This study has been largely concerned with the flow and heat and mass trans-

fer characteristics in various physical situations. Vajravelu and Hadjinicolaou

(1997) studied convective heat transfer in an electrically conducting fluid at a

stretching surface with uniform free stream. Anjalidevi and Kandasamy (1999)

investigated effects of chemical reaction, heat and mass transfer on laminar flow

along a semi infinite horizontal plate. Magnetic field effects on the free convec-

tion and mass transfer flow through porous medium with constant suction and
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constant heat flux was studied by Acharya et al. (2000). Sahoo et al. (2003)

have studied MHD unsteady free convection flow past an infinite vertical plate

with constant suction and heat sink. Heat and mass transfer in MHD flow of

a viscous fluid past a vertical plate under oscillatory suction velocity was in-

vestigated by Singh et al. (2003). Chamkha (2004) investigated unsteady MHD

convective heat and mass transfer past a semi-infinite vertical permeable moving

plate with heat absorption. Hazem (2006) studied on the effectiveness of uni-

form suction and injection on unsteady rotating disk flow in porous medium with

heat transfer. Chaudhary and Jha (2008) have studied heat and mass transfer

in elastico-viscous fluid past an impulsively started infinite vertical plate with

Hall effect. Mahdy et al. (2009) have investigated heat and mass transfer in

MHD free convection along a vertical wavy plate with variable surface heat

and mass flux. Samad and Mohebujjaman (2009) have studied MHD heat and

mass transfer free convection flow along a vertical stretching sheet in presence

of magnetic field with heat generation.

Because of enormous practical applications of injection to problems of boundary

layer control, thermal protection of high energy flows and recently to those of

seeding processes to enhance possible MHD effects and due to intricacy analysis

to investigate combined effects of heat and mass transfer with injection of an

MHD flow, we have been fascinated to and motivated towards this direction.

Our main purpose is to investigate numerically the problem of combined heat

and mass transfer of an unsteady MHD flow past an infinite plate with injec-

tion. The results of this study are discussed for various numerical values of the

parameters which suits for the case of injection.

2. Mathematical Formulation

Here an unsteady two dimensional free convective flow of an electrically con-

ducting viscous and incompressible fluid past an infinite, porous and vertical

plate with constant injection and heat flux is considered. A magnetic field 0
is applied perpendicular to the plate. A system of rectangular coordinate axes

o111 is taken such that 1 = 0 on the plate and 1 is along its leading edge.

All the fluid properties are considered. The influence of the density variation

with temperature is considered only in the body force term. Its influence in

other terms of the momentum and the energy equations is assumed to be negli-

gible. The variation of expansion coefficient with temperature is considered to

be negligible. This is the well-known Boussinesq approximation. Thus, under

these assumptions, the physical variables are functions of 1 and 1 only and

the problem is governed by the following system of equations

continuity equation :
1

1
= 0(1)

momentum equations :
1

1
+ 1

1

1
= (1 − ∞)+

21

21
−2

01


(2)
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energy equation :
1

1
+ 1

1

1
=

21

21
(3)

mass transfer equations :
1

1
+ 1

1

1
=

021
21

(4)

The initial and boundary conditions of the problem are

1 ≤ 0
1(1 1) = 0

1(1 1) = ∞

1(1 1) = ∞;(5)

1  0

1(0 1) = 0

1(0 1) =  + ( − ∞)11 

1(0 1) = ∞ + ( − ∞)1 at 1 = 0;(6)

1  0

1(∞ 1)→ 0

1(∞ 1)→ ∞

1(∞ 1)→ ∞ as 1 →∞(7)

Since the plate is assumed to be porous type and through it suction with uniform

velocity occurs, equation (1) integrates to

1 = −0
which is the constant suction velocity. Here,  is the velocity of the fluid, 1 is

the temperature of the fluid,  is the dimensionless temperature,  is the tem-

perature of the fluid near the plate, ∞ is the temperature of the fluid far away

from the plate, 1 is the concentration of the species,  is the concentration

near the plate, ∞ is the concentration far away from the plate,  is dimen-

sionless concentration,  is the acceleration due to gravity,  is the coefficient of

volume expansion for heat transfer, 0 is the coefficient of volume expansion for
concentration,  is the kinematic viscosity,  is the scalar electrical conductiv-

ity,  is the frequency of oscillation,  is a constant, 0 is the applied uniform

magnetic field,  is the density of the fluid,  is the thermal conductivity,  is

the injection parameter, 0 is the molecular diffusivity, and  is the time.

From equation (1) we observe that 1 is independent of space co-ordinates and

may be taken as constant. We define the following non-dimensional variables
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and parameters.

(8)

 =
1

2
0

4
  =

01

4


 =
1

0
  =

1 − ∞
 − ∞

  =
1 − ∞
 − ∞



 =



  =



0 

 =
2

0

 2
0

  =
( − ∞)

 3
0

  =
1

0


 =
0( − ∞)

 3
0

  =
1

 2
0



Now taking into account equations (5), (6), (7) and (8), equations (2), (3) and

(4) reduce to the following non-dimensional form

(9)



− 




= 

2

2
+  − + 




− 




=





2

2
(10)




− 




=





2

2
(11)

with

 ≤ 0
( ) = 0

 ( ) = 0

( ) = 0;(12)

  0

(0 ) = 0

 (0 ) = 1 + (13)

(0 ) =  at  = 0;

  0

(∞ ) = 0

 (∞ ) = 0

(∞ ) = 0 as  →∞(14)

The Grash of number   0 represents external cooling of the plate and   0

denotes external heating of the plate.  the modified Grshof number,  the

Schmidt number,  the Prandtl number and  is the injection parameter.
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3. Method of solution

In order to solve these unsteady, linear coupled equations (9) to (11) under the

conditions (12) to (14), an implicit method of Crank-Nicolson type has been

employed. To obtain the finite difference equations, the region of the flow is

divided into a grid of mesh points ( ). The values of the dependent variables

  and  at the nodal points along the plane  = 0 are given by  (0 ), (0 )

and (0 ) hence are known from the boundary conditions. Let ∆ and ∆

represents the uniform step lengths in  and  directions. We need a scheme to

find single values at next time level in terms of known values at an earlier time

level. A forward difference approximation for the first order partial derivatives

of   and  with respect to  and  and a central difference approximation for

the second order partial derivative of   and  with respect to  are used. On

introducing finite difference approximations for



,



,
2

2
,



,



,
2

2
,




,



,
2

2
as

µ




¶


=
+1 − 

(∆)
;

µ




¶


=
+1+1−−1+1++1−−1

4(∆)
;µ





¶


=
+1 − 

(∆)
;

µ




¶


=
+1+1−−1+1++1−−1

4(∆)
;µ





¶


=
+1 − 

(∆)
;

µ




¶


=
+1+1−−1+1++1−−1

4(∆)
;µ

2

2

¶


=
+1 − 2 + −1 + +1+1 − 2+1 + −1+1

2(∆)2
;µ

2

2

¶


=
+1 − 2 + −1 + +1+1 − 2+1 + −1+1

2(∆)2
;µ

2

2

¶


=
+1 − 2 + −1 + +1+1 − 2+1 + −1+1

2(∆)2
(15)

The finite difference approximation of equations (9) to (11) are obtained on

substituting equation (15) into equations (9)-(11)

2+1 −
µ
1

2
+
∆

∆

¶
+1+1 +

µ
∆

∆
− 1
2

¶
−1+1

=
¡
1
2
+ ∆
∆

¢
+1+

³
−∆
∆
+ 1

2

´
−1+∆ +∆−∆ (16) µ

1 +




¶
+1 +

µ
∆

∆
− 2



¶
−1+1 −

µ
∆

∆
+
2



¶
+1+1

=

µ
∆

∆
+
2



¶
+1 +

µ
2


− ∆
∆

¶
−1 +

µ
1− 



¶
 (17)
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µ
1 +





¶
+1 +

µ
∆

∆
− 1

2

¶
−1+1 −

µ
∆

∆
+
1



¶
+1+1

=

µ
2


+
∆

∆

¶
+1 +

µ
2


− ∆
∆

¶
−1 +

µ
1− 



¶
 (18)

4. Numerical Computations

To get the numerical solutions of the temperature  , velocity  and concen-

tration , we have taken the aid of the computer by developing a code in

Mathematica5.0. The logic of the program is divided three steps as follows:

Step 1. main, initially it creates three tables to hold the numerical solutions

of temperature, velocity and concentration whose coefficients are allotted in the

step 2. After this, it calculates the numerical values at the next time level.

In order to do this, it uses another sub- module namely Tri-diagonal, which

solves the tri-diagonal matrix by using successive over relaxation method with

complete pivoting. Further it moves to the step3, for listing the numerical

solutions.

Step 2. Coeff Mat, we know that all the terms and their coefficients on right

hand side of equations (16), (17) and (18) are known values from initial and

boundary conditions. At every time step, for different values of ‘’, the finite

difference approximation of equation (18) gives a linear system of equations.

Then, for  = 0 and  = 1 2     − 1, equation (18) gives a linear system of

(− 1) equations for the (− 1) unknown values of ‘’ in the first time row in
terms of known initial and boundary values. This module maintains coefficients

of this linear system of equations. Similarly the above process repeats for the

remaining equations (17) and (18) to obtain the numerical values of  and .

Step 3. Tabulation, It lists the numerical solution at every time step level. By

making use of  and  into equation (16), the numerical solutions for ‘’ are

obtained.

Code for numerical solutions of temperature profiles for  = 0733 for the case

of injection

CNgrid[__] :=

Module[{ },
 = Table[1 {} {}];
For[ = 1  ≤  ++ [[ 1]] =  [];];

For[ = 1  ≤   ++ [[1 ]] = 1[]; [[  ]] = 2[]; ]; ];

TriDiagonal[0_ 0_ 0_ 0_] :=

Module[{ = 0  = 0  = 0  = 0   = Length[0] },
For[ = 2  ≤   ++,

[[]] = [[]] − ([[−1]][[−1]]) ∗ [[−1]];
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[[]] = [[]] − ([[−1]][[−1]]) ∗ [[−1]]; ];
 = Table[0 {}]; [[]] = [[]][[]];

For [ = − 1; 1 ≤ ;  −−[[]] = ([[]] − [[]] ∗ [[+1]])[[]]; ];
Return []; ];

Tabulation :

Module[{},

Print["Complete Table"];

Print["   Numerical Solution"];

Print["==============================="];

result=Table["––––—", {( ∗ ) +− 20} {5}];

Input data:

 = 10;  = 01;  = 1;  = 21;  = 41;  = −4;
 [_] = 0; 1[_] = 10; 2[_] = 00;

 = (− 1);  = (− 1);
 [_] =  [(− 1)]; 1[_] = 1[( − 1)]; 2[_] = 2[( − 1)];
CNgrid[];  = (2 ∗ )2;
  =   = Table[−1 {−1}]; [[−1]] =  [[1]] = 0;  = Table[2+(2) {}];
 [[1]] =  [[]] = 1;

 = Table[0 {}];
For[ = 2  ≤ ,  ++, [[1]] = 1[]; [[]] = 2[];

For [ = 2  ≤ − 1 ++,
[[]] = (05− (( ∗ )(4 ∗ ))) ∗ [[−1−1]] + [[−1]]

+(05 + (( ∗ )(4 ∗ )))) ∗ [[+1−1]]
+(( ∗ )(4 ∗ )) ∗ ([[+1]] − [−1]]); ];

[[]] =TriDiagonal [      ];

Print[NumberForm[TableForm[ [Transpose[Chop[]]],TableSpacing− {0,2}]]];

Print[TableForm[result,TableSpacing −  {0 2}]];
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Output:

Table 1. Numerical solutions of Temperature profiles for

 = 0733 for the case of injection

  Numerical solution

0.1 0 1

0.1 0.05 0.923611

0.1 0.1 0.847906

0.1 0.15 0.773549

0.1 0.2 0.701163

0.1 0.25 0.631316

0.1 0.3 0.564501

0.1 0.35 0.501127

0.1 0.4 0.441507

0.1 0.45 0.385855

0.1 0.5 0.334278

0.1 0.55 0.286782

0.1 0.6 0.24327

0.1 0.65 0.203553

0.1 0.7 0.167353

0.1 0.75 0.134315

0.1 0.8 0.104015

0.1 0.85 0.075975

0.1 0.9 0.049669

0.1 0.95 0.024538

0.1 1 0

Code for numerical solutions of velocity profiles for  = 0733

CNgrid[__]:=

Module[{ },
 = Table[1 {} {}];  = Table[1 {} {}];
For[ = 1  ≤  ++ [[1]] =  []; [[1]] =  []; ];

For[ = 1  ≤   ++ [[1]] = 1[]; [[1]] = 1[];

[[]] = 2[]; [[]] = 2[]; ];

TriDiagonal[0_ 0_ 0_ 0_] :=

Module[{ = 0  = 0  = 0  = 0   = [0] },
For[ = 2  ≤   ++ [[]] = [[]] − ([[−1]][[−1]]) ∗ [[−1]];

[[]] = [[]] − ([[−1]][[−1]]) ∗ [[−1]];
 = Table[0 {}]; [[]] = [[]][[]];

For[ = − 1 1 ≤   −− [[]] = ([[]] − ([[]] ∗ [[+1]]))[[]]; ];
Return[]; ];

Module[{},

Print["Complete Table"];
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Print["   Numerical Solution"];

Print["=========================="];

result=Table["–––", {( ∗ ) +− 20} {5}];

Input data:

 = 10;  = 01;  = 1;  = 1; = 21; = 41; = 2; = 3;  = −05;
 [_] = 0;1[_] = 10;2[_] = 00;

 = (− 1);  = (− 1);
 [_] =  [(− 1)]; 1[_] = 1[( − 1)]; 2[_] = 2[( − 1)]; CNgrid[];
 = (2 ∗ )2;  = (2 ∗ )2;  = 05;
  =   = Table[−1 {−1}]; [[−1]] =  [[1]] = 0;  = Table[2+(2) {}];
  = Table[2 + (2) {}]; [[1]] =  [[]] = 1;  [[1]] =  [[]] = 1;

 = Table[0 {}];
For[ = 2  ≤   ++ [[1]] = 1[]; [[]] = 2[];

For [ = 2  ≤ −1 ++ [[]] = [[−1−1]+((2)−2)∗[[−1]+[[+1−1]; ];
[[]] = TriDiagonal[   ]; ];

 = Table[0 {}]
For[ = 2  ≤   ++ [[1]] = 1[]; [[]] = 2[];

For[ = 2  ≤ − 1 ++,
[[]] = [[−1−1]] + ((2)− 2) ∗ [[−1]]
+[[+1−1]] + (4) ∗  ∗ (([[+1−1]] − [[−1]]))
+(4) ∗  ∗ (([[+1−1]] − [[−1−1]]))
+( ∗  ∗  ∗ ([[−1]] + [[]]))− (2 ∗ ∗  ∗  ∗ [[+1−1]); ];

[[]] = TriDiagonal [   ]; ];

Tabulation:

Print[NumberForm[TableForm[ [Transpose[Chop[]]],TableSpacing− {0,2}]]];

Print[NumberForm[TableForm[ [Transpose[Chop[]]],TableSpacing− {0,2}]]];

Comparison[];

Print[TableForm[result, TableSpacing − {0,2}]];
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Output: numerical solution for velocity profiles for  = 0733

Table 2. Numerical solutions of velocity profiles for  = 0733

  Numerical solution

0.0975 0 1

0.0975 0.05 0.882349

0.0975 0.1 0.853675

0.0975 0.15 0.833967

0.0975 0.2 0.721045

0.0975 0.25 0.671107

0.0975 0.3 0.69668

0.0975 0.35 0.527745

0.0975 0.4 0.364691

0.0975 0.45 0.307724

0.0975 0.5 0.256872

0.0975 0.55 0.211999

0.0975 0.6 0.172823

0.0975 0.65 0.118938

0.0975 0.7 0.159839

0.0975 0.75 0.184943

0.0975 0.8 0.063609

0.0975 0.85 0.04516

0.0975 0.9 0.00889

0.0975 0.95 0.004079

0.0975 1 0

Figure 1. Rate of heat transfer

118



Table 3. Numerical solutions of rate of heat transfer

 Numerical values of 

0.0025 11.69578

0.005 10.4067

0.0075 9.66101

0.01 8.29947

0.0125 7.21477

0.015 7.11348

0.0175 6.60449

0.02 5.991646

0.0225 5.468969

0.025 5.017448

0.0275 4.622961

0.03 4.274846

0.0325 3.964935

0.035 4.686876

0.0375 3.435664

0.04 3.207309

0.0425 2.998585

0.045 2.806863

0.0475 1.629974

0.05 1.466115

Figure 2. Numerical solutions of concentration for hydrogen  = 022
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Table 4. Numerical solutions of concentration profiles for

hydrogen  = 022

  Numerical solution

0.0025 0 1

0.0025 0.05 1.042285

0.0025 0.1 0.543179

0.0025 0.15 0.283074

0.0025 0.2 0.147522

0.0025 0.25 0.07688

0.0025 0.3 0.040065

0.0025 0.35 0.02088

0.0025 0.4 0.010881

0.0025 0.45 0.005671

0.0025 0.5 0.002955

0.0025 0.55 0.00154

0.0025 0.6 0.000803

0.0025 0.65 0.000418

0.0025 0.7 0.000218

0.0025 0.75 0.000113

0.0025 0.8 5.89E-05

0.0025 0.85 3.02E-05

0.0025 0.9 1.49E-05

0.0025 0.95 6.10E-06

0.0025 1 0

Table 5. Rate of Mass transfer

S.No  
1 0.22 0.69869

2 0.60 0.85989

3 0.78 0.36896

5. Results and Discussion

For the purpose of discussing the results some numerical solutions are obtained

for non-dimensional temperature  , velocity  and concentration . By using

temperature the rate of heat transfer and by using concentration rate of mass

transfer is obtained.

The temperature profiles for air ( = 0733) for the case of injection are shown

in Table 1. The numerical solutions for the case of injection for temperature

have been shown in Table 1. It can be seen from the table that the transient
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temperature decreases for the increase of . Similarly temperature field due

to variation in  for water, mercury etc has been found and observed that

mercury has a stationary temperature. To save the space we are not giving full

details as it is obvious to do. The concentration profiles for hydrogen  = 022

for the case of injection are shown in Figure 7. The numerical solutions for

the case of injection for concentration have been shown in Table 4. It can be

seen from the table as well as figure that the transient concentration profiles

decreases for the increase of . The concentration profiles due to variation of

 for gases like oxygen, and water vapor has been found but not giving here

due to almost similar calculations. It can be found that hydrogen can be used

for maintaining effective concentration field. The transient velocity profiles for

air ( = 0733) for the case of injection are shown in Table 2. The numerical

solutions for the case of injection for velocity have been shown in Table 2. It

can be seen from the table that the transient velocity profiles decreases for the

increase of . While finding velocity profiles numerical values for , 

have been chosen suitably.

From the technological point of view, it is important to know the rate of heat

transfer between the plate and the fluid. This can be found by using the non-

dimensional quantity, the Nusselt number . The Nusselt number is defined

as negative gradient of the temperature. The numerical values of the Nusselt

number against time t are shown in Figure 5 and Table 3. Figure 5 shows the

heat transfer for different times. As  increases, the rate of heat transfer at

the plate decreases gradually. Finally for mass transfer we need the negative

gradient of concentration. This is denoted and defined as Schmidt number .

The numerical values of rate of mass transfer in terms of Sherwood number

 are obtained and have been shown in Table 5. From this table it can be

observed that rate of mass transfer first increases gradually and then decreases

as per gradual increase and then decrease of the Schmidt number.

6. Conclusions

The main conclusions of this study are as follows:

(i) The transient temperature decreases for the case of air.

(ii) The transient concentration profiles decreases for the increase of  for the

case of hydrogen.

(iii) The transient velocity profiles decreases for the increase of  for the case

of air.

(iv) The rate of heat transfer at the plate decreases gradually.

(v) The rate of mass transfer first increases gradually and then decreases as per

gradual increase and then decrease of the Schmidt number.
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