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1. Introduction

Mannheim metric, which was initially put forward by Huber in 1994, has been

used in many papers so far [1, 2, 3,4, 5]. In 1994, Huber defined the Mannheim

metric and the Mannheim weight over Gaussian integers and, eventually, he

obtained the linear codes which can correct errors of Mannheim weight one in

[1]. Moreover, some of these codes which are suited for quadrature amplitude

modulation (QAM)-type modulations were considered by Huber. Later, Huber

transferred these codes, which he obtained by using the Mannheim metric and

Gaussian integers, into Eisenstein-Jacobi integers in [2]. In 1997, Huber proved

the MacWilliams theorem for two-dimensional modulo metric (Mannheim met-

ric) [3]. In 2001, Neto obtained new codes over Euclidean domain 
√
 , where

 = −1−2−3−7−11 , in [4] by using the Mannheim metric given in [1, 2]. In
2004, Fan and Gao obtained one-error correcting linear codes by using a novel

Mannheim weight over finite algebraic integer rings of cyclotomic fields [5]. In

our study, the codes in [1] are transferred into some finite ring by using the

Mannheim metric and Gaussian integers. In decoding procedure, some differ-

ences occur when these codes are transferred from finite field into finite rings.

We also mention these differences.

Section II is organized as follows. In Proposition 1, the necessary algebraic

background is revealed in order to obtain cyclic codes. In Theorem 2, it is shown
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how to obtain cyclic codes by utilizing Proposition 1, 2 and 3. In Proposition

4, the algebraic background, which is essential for obtaining cyclic code over

the other finite rings, is arranged and in Theorem 3, it is shown how to obtain

cyclic codes over the other finite rings.

2. Cyclic Codes over Gaussian Integers

A Gaussian integer is a complex number whose real and imaginary parts are

both integers. Let  denote the set of all Gaussian integers and let  denote

residue class of  modulo , where  =  +  is a Gaussian prime integer

and  is a prime integer such that  = 2 + 2 = 4 + 1 The modulo function

 ()→  is defined by

(1) () =  − [
∗


]

where  () is a finite field with  elements. In (1), the symbol of [.] is

rounding to the closest integer. The rounding of Gaussian integer can be done

by rounding the real and imaginary parts separately to the closest integer. In

view of equation (1),  is isomorphic to , where  is residue class of the set

 of all integers modulo . Let  and  be elements in  then the Mannheim

weight of  is defined by  () = |Re ()|+ |Im()|, where  = −  (mod).

Since the codes are linear codes, the Mannheim distance between  and  is

 ( ) =  () [1].

Theorem 1. If  and  are relatively prime integers, then  = [] h+ i ∼=
2+2 [6].

Proposition 1. Let  =  +  be a prime in  and let   2 be a prime

element in  such that  = 2 + 2 = 4 + 1. If  is a generator of ∗2 , then
(

2)4 ≡  (mod2), ( or (
2)4 ≡ − mod2).

Proof. If || = 4+1 is a prime integer in  , the real and imaginary parts of 2
are relatively primes, where the symbol |·| denotes modulo of a complex number.
So, 2 is isomorphic to 2 (See Theorem 1). If  is a generator of ∗2 , then
 2  (

2) mod2 constitute a reduced residue system. Therefore there is

a positive integer  as  ≡  mod2 ( ≡ − mod2, where 1 ≤  ≤ (2)).

Hence, we can infer 4 ≡ 1 mod2. Since (2)
¯̄
4 and 4 ≤ 4 ≤ 4(2) , we

obtain (2) =  (2) = 2 or (2) = 4. If (2) =  was equal to  or 2 ,

we should have 2
¯̄
 − 1 or 2

¯̄
2 (2

¯̄
−  − 1), but this would contradict the

fact that
¯̄
2
¯̄2
 2.

Proposition 2. Let  =  +  be a prime in  and let   2 be a prime in

 such that  = 2 + 2 = 4 + 1. If  is a generator of ∗

, the (

)4 ≡
 (mod) or ((

)4 ≡ − (mod)).
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Proof. This is immediate from Proposition 1.

Proposition 3. Let  = +  be a prime in  and let   2 be a prime in 

such that  = 2+2 = 4+1. If  is a generator of∗

and (

2)4 ≡  mod2,

then − also becomes a generator of ∗
2
such that (−)(2)4 ≡ − mod2.

Proof. (
2)4 ≡  mod2 implies that(−)(2)4 ≡ − mod2 since (2) =

4(4+ 1) and  is an odd integer.

Theorem 2. Let   2 is a prime in  and  =  +  is a prime in  such

that  = 2+ 2 = 4+1 (   ∈ ) , then cyclic codes of length (2)4 and

(2)2 are generated over the ring 2 whose generator polynomials are of the

first and second degree, respectively.

Proof. There is an element  of 2 and 
∗
2 is generated by  since 2 is iso-

morphic to 2 . We know that 
(2)4 ≡  mod2 implies that (−)(2)4 ≡

− mod2 from Proposition 3. Hence (
2)4 −  and (

2)4 +  are factored

as ( − )() mod2 for  =  and ( + )() mod2 for  = −, respec-
tively, where () and () are the polynomials in the indeterminate  with

coefficients in 2 . Moreover, 
(2)2+1 can be factored as (−)(+)()

mod2, where () is the polynomials in the indeterminate  with coefficients

in 2 .Furthermore all components of any row of generator matrix do not con-

sist of zero divisors since the generator polynomial would be selected as a monic

polynomial.

We now explain how to construct cyclic codes over the other finite rings.

Denote ∗ by the set of multiplicative inverse elements of . If  ≥ 1 and |
then the set ∗() is a subgroup of 

∗
, where 

∗
() = { ∈ ∗ :  ≡ 1 mod }.

If  and  are relatively prime numbers, then ∗() ∼= ∗  
∗
()

∼= ∗ .

Proposition 4. Let 1 and 2 be odd primes and let 1 = + and 2 = +

be prime Gaussian integers, where 1 6= 2 and 1 = 2 + 2 = 41 + 1 and

2 = 2+2 = 42+1 (    1 2 ∈ ). If 1 and 2 are Gaussian integers,

there exist elements  and  in ∗12 satisfying (2) ≡ 1 (mod12) and

(1) ≡ 1 (mod12).

Proof. Let 1 and 2 be distinct odd primes. Then 1 and 2 are relatively

primes. Since  and  are relatively prime numbers, 1 and 2 can be chosen as

 and , respectively, that is,  = 2 + 2 = 41 + 1 and  = 2 + 2 = 42 + 1.

Using (1), we have  ∼= 1 and  ∼= 2 . It is clear that 
∼= 12 from

Theorem 1. Thus, we have ∗12(1)
∼= ∗() ∼= ∗ ∼= ∗2

∗
2
is a cyclic group

because 2 is a prime Gaussian integer. So, 
∗
12

(1) has a generator. Let’s

call this generator . Then (2) ≡ 1 (mod12). In a similar way, ∗12(2)
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has a generator, let’s call it  . Then (1) ≡ 1 (mod12) since ∗12(2) is
isomorphic to ∗1 .

Proposition 5. Let  be distinct odd primes in  such that  = 2 + 2 =

4 +1,  =  +  and    ∈ , for  = 1 2 . Then, there exists

an element  of 
∗
12

such that 
()

 ≡ 1 (mod12).

Proof. This is immediate from Proposition 4.

Theorem 3. Let 1 and 2 be distinct od primes in  and let 1 = +  and

2 =  +  be prime Gaussian integers in , where 1 = 2 + 2 = 41 + 1,

2 = 2 + 2 = 42 + 1, 1 2 ∈ . Then there exists a cyclic code of length

(1) and (2) over the ring 12 . The generator polynomial of this cyclic

code is a first degree monic polynomial.

Proof. From Proposition 4, (2)−1 can be factored as (−)()(mod12)
since (2) ≡ 1 (mod12). If we take the generator polynomial as () = −,
then the generator polynomial () generates the generator matrix. At least one

of the components in any row of the generator matrix is not zero divisor.

To illustrate the construction of cyclic codes over some finite rings, we consider

examples as follows.

Example 1. The polynomial 10+1 factors over the ring 3+4 as (−2)(−
1+)(), where () is a polynomial in 3+4 []. If the generator polynomial

() is taken as 2 + (1 − 2) + (−2 + ), then the generator matrix and the
parity check matrix are as follows

 =



−2 +  1− 2 1 0 0 0 0 0 0 0
0 −2 +  1− 2 1 0 0 0 0 0 0
0 0 −2 +  1− 2 1 0 0 0 0 0
0 0 0 −2 +  1− 2 1 0 0 0 0
0 0 0 0 −2 +  1− 2 1 0 0 0
0 0 0 0 0 −2 +  1− 2 1 0 0
0 0 0 0 0 0 −2 +  1− 2 1 0
0 0 0 0 0 0 0 −2 +  1− 2 1




 =


1 − (1− 2) − (−2 + ) − (2 + ) − (1 + ) − (2 + ) 3 −1 +  2 0

0 1 − (1− 2) − (−2 + ) − (2 + ) − (1 + ) − (2 + ) 3 −1 +  2




respectively. Let the received vector  be¡ −2 +  1− 2 1  0 0 0 0 0 0
¢


First we compute the syndrome  as follows:

 =
3 + 2 + (1− 2)+ (−2 + )

2 + (1− 2)+ (−2 + )
= (1 + 2)+ (2 + )

Therefore, from Table I, it is seen that the syndrome  ≡ 3. Notice that first

we compute the syndrome of the received vector to be decoded. If this syndrome

does not appears in Table I, then its associates should be checked. Thus, the
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received vector  is decoded as () = () − 3 = 2 + (1 − 2) + (−2 + ).

Finally we get

 =
¡ −2 +  1− 2 1 0 0 0 0 0 0 0

¢
.

Example 2. Let 1 = 5, 2 = 13. Let the generator polynomial () and the

parity check polynomial () be − 3−  and 3+(3+ )2+(4− )+2− 2,
respectively. Then we obtain the generator matrix  and parity check matrix

 as follows, respectively;

 =

⎛⎝ −3−  1 0 0

0 −3−  1 0

0 0 −3−  1

⎞⎠ 

 =
¡
1 3 +  4−  2− 2 ¢ 

Assume that received vector is  =
¡ −3−  1  0

¢
. We compute the

syndrome as

()

()
=

2 + − 3− 

− 3− 
= (− 3− )(+ 3) + (1 + 4)

Since 1 + 4 ≡ 2, the vector () is decoded as () = ()− 2 = − 3− .

In Table II, coset leaders and their syndromes are given.

3. Conclusion

In this paper we obtained cyclic codes over some finite Gaussian integer rings

and we gave decoding procedure for these codes.

0 0 6 (−2− )+ 3

1 1 7 3+ (2 + )

  8 (−1 + 2)+ 2
2 (−1 + 2)+ (2− ) 9 2+ (1− 2)
3 (2− )+ (1− 2) 10 −1
4 (−2− )+ (−1− ) 11 11 = 10

5 (−1− )+ (2 + ) 12 12 = 102

Table 1. The coset leaders and their syndromes.
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0 0

1 1 (and its associates)

 3 +  (and its associates)

2 4−  (and its associates)

3 2− 2 (and its associates)
Table 2. The coset leaders and their syndromes.
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