Oscillation Results of Higher Order Nonlinear Neutral Delay Differential Equations

M. K. Yıldız, Ö. Öcalan

Afyon Kocatepe University, Faculty of Science and Arts, Department of Mathematics, ANS Campus, 03200, Afyon, Türkiye
e-mail: myildiz@aku.edu.tr, ozkan@aku.edu.tr
Received Date: November 2, 2009
Accepted Date: August 11, 2010
Abstract. In this paper, we shall consider higher order nonlinear neutral delay differential equation of the type

$$
[x(t)+p(t) x(\tau(t))]^{(n)}+q(t)[x(\sigma(t))]^{\alpha}=0, \quad t \geq t_{0}, n \in \mathbb{N}
$$

where $p, q \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), \tau, \sigma \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \tau(t)<t, \lim _{t \rightarrow \infty} \tau(t)=\infty$, $\sigma(t)<t, \lim _{t \rightarrow \infty} \sigma(t)=\infty$, and $\alpha \in(0, \infty)$ is a ratio of odd positive integers. We obtain sufficient conditions for the oscillations of all solutions of this equation.

Key words: Oscillation, differential equation, neutral, delay, nonlinear. 2000 Mathematics Subject Classification. 34C10,34K15, 34K40, 35B05, 35L20.

1. Introduction

We consider the following higher order nonlinear neutral delay differential equation:

$$
\begin{equation*}
[x(t)+p(t) x(\tau(t))]^{(n)}+q(t)[x(\sigma(t))]^{\alpha}=0, \quad t \geq t_{0}, n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where $p, q \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), \tau, \sigma \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \tau(t)<t, \lim _{t \rightarrow \infty} \tau(t)=\infty$, $\sigma(t)<t, \lim _{t \rightarrow \infty} \sigma(t)=\infty$, and $\alpha \in(0, \infty)$ is a ratio of odd positive integers. If $0<\alpha<1$, equation (1.1) is called sublinear equation, when $\alpha>1$, it is called superlinear equation.
Recently, there have been a lot of studies concerning the behaviour of the oscillatory differential equations, see [1-9] and the reference cited therein. In [2,4,6,8] several authors have investigated the following first order nonlinear delay differential equation of the form,

$$
\begin{equation*}
x^{\prime}(t)+q(t)[x(\sigma(t))]^{\alpha}=0, \quad t \geq t_{0} \tag{1.2}
\end{equation*}
$$

where $q \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), \sigma \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \sigma(t)<t, \lim _{t \rightarrow \infty} \sigma(t)=\infty$, and $\alpha \in(0, \infty)$ is a ratio of odd positive integers.
When $0<\alpha<1$, it is shown that every solution of sublinear equation (1.2) oscillates if and only if

$$
\begin{equation*}
\int_{t=t_{0}}^{\infty} q(t) d t=\infty . \tag{1.3}
\end{equation*}
$$

When $\alpha=1$, (1.2) reduces to the linear delay differential equation

$$
\begin{equation*}
x^{\prime}(t)+q(t) x(\sigma(t))=0, \quad t \geq t_{0} . \tag{1.4}
\end{equation*}
$$

Recently, the oscillatory behavior of (1.4) has been discussed extensively in the literature. A classical result is (see $[2,4]$) that every solution of (1.4) oscillates if

$$
\liminf _{t \rightarrow \infty} \int_{\sigma(t)}^{t} q(s) d s>\frac{1}{e}
$$

In [6], when $\alpha>1$, Tang obtained the oscillatory behavior of equation (1.2). It is shown that, let $\sigma(t)$ is continuously differentiable and $\sigma^{\prime}(t) \geq 0$. Further, suppose that there exist a continuously differentiable function $\varphi(t)$ such that

$$
\begin{aligned}
& \varphi^{\prime}(t)>0 \text { and } \lim _{t \rightarrow \infty} \varphi(t)=\infty \\
& \limsup _{t \rightarrow \infty}\left[\frac{\alpha \varphi^{\prime}(\sigma(t)) \sigma^{\prime}(t)}{\varphi^{\prime}(t)}\right]<1
\end{aligned}
$$

and

$$
\liminf _{t \rightarrow \infty}\left[\frac{q(t) e^{-\varphi(t)}}{\varphi^{\prime}(t)}\right]>0
$$

Then every solution of superlinear equation (1.2) oscillates. Furthermore, Tang considered the following special form of (1.2),

$$
\begin{equation*}
x^{\prime}(t)+q(t)[x(t-\sigma)]^{\alpha}=0, \quad t \geq t_{0} \tag{1.5}
\end{equation*}
$$

which was obtained, if exists $\lambda>\sigma^{-1} \ln \alpha$ such that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}\left[q(t) \exp \left(e^{-\lambda t}\right)\right]>0 \tag{1.6}
\end{equation*}
$$

then every solution of (1.5) oscillates.
In [1] Agarwal and Grace, in [3] Grace and Lalli studied oscillatory behavior of certain higher order differential equations.
Our aim in this paper is to obtain sufficient conditions for the oscillation of all solutions of (1.1).
We need the following result for our subsequent discussion.

Lemma 1.1. (See[8].)Assume that for large t

$$
p(s) \neq 0 \text { for } s \in\left[t, t^{*}\right],
$$

where t^{*} satisfies $\sigma\left(t^{*}\right)=t$. Then

$$
x^{\prime}(t)+p(t)[x(\sigma(t))]^{\alpha}=0, \quad t \geq t_{0}
$$

has an eventually positive solution if and only if the corresponding inequality

$$
x^{\prime}(t)+p(t)[x(\sigma(t))]^{\alpha} \leq 0, \quad t \geq t_{0}
$$

has an eventually positive solution.
Lemma 1.2. (See[5].)Let z be a positive and n-times diferentiable function on $\left[t_{0}, \infty\right)$. If z^{n} is of constant sign for $n \geq a$ and not identically zero on any interval $\left[t_{*}, \infty\right)$ for some $t_{*} \geq t_{0}$, then, there exists a $t_{z} \geq t_{0}$ and an integer m, $0 \leq m \leq n$ with $(n+m)$ odd for $z^{(n)}(t) \leq 0$, or $(n+m)$ even for $z^{(n)}(t) \geq 0$, and such that for every $t_{z} \geq t_{0}$,

$$
m \leq n-1 \text { implies }(-1)^{m+k} z^{(k)}(t)>0, \quad k=m, m+1, \cdots, n-1
$$

and

$$
m>0 \text { implies } z^{(k)}(t)>0, \quad k=0,1, \cdots, m-1
$$

Lemma 1.3. (See[7].)Let z be as in Lemma 1.2. In addition $\lim _{t \rightarrow \infty} z(t) \neq 0$ and $z^{(n-1)}(t) z^{(n)}(t) \leq 0$ for every $t \geq t_{z}$, then for every $\lambda, 0<\lambda<1$, the following hold:

$$
z(t) \geq \frac{\lambda}{(n-1)!} t^{n-1} z^{(n-1)}(t) ; \text { for all large } t
$$

2. Sufficient Conditions for Oscillations of Equation (1.1)

Theorem 2.1. (a) Let n be even and $0 \leq p(t)<1$ for $t \geq t_{0}$. If the diferential equation

$$
\begin{equation*}
w^{\prime}(t)+c(t)[w(\sigma(t))]^{\alpha}=0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c(t)=q(t)\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}[1-p(\sigma(t))]^{\alpha}(\sigma(t))^{\alpha(n-1)} . \tag{2.2}
\end{equation*}
$$

is oscillatory, then all solutions of (1.1) are oscillatory.
(b) Let n be odd and $0 \leq p(t) \leq P_{1}<1$, where P_{1} is a constant. If the diferential equation

$$
\begin{equation*}
w^{\prime}(t)+c(t)[w(\sigma(t))]^{\alpha}=0 \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c(t)=q(t) c_{2}\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}[w(\sigma(t))]^{\alpha} \tag{2.4}
\end{equation*}
$$

is oscillatory, then every solution of (1.1) either oscillates or tends to zero as $t \rightarrow \infty$.

Proof. Let $x(t)$ be a nonoscillatory solution of (1.1), with $x(t)>0, x(\tau(t))>0$ and $x(\sigma(t))>0$, for all $t \geq t_{0} \geq T_{0}$. Setting $\quad z(t)=x(t)+p(t) x(\tau(t))$, we get $z(t) \geq x(t)>0$ and

$$
\begin{equation*}
z^{(n)}(t)=-q(t) x^{\alpha}(\sigma(t))<0 \tag{2.5}
\end{equation*}
$$

for $t \geq t_{0}$. Then by Lemma $1.2, z^{(k)}(t)$ is of constant sign for $k=1,2,3, \ldots, n$, and that for $n \geq 2$

$$
\begin{equation*}
z^{(n-1)}(t)>0, \quad t \geq t_{0} \tag{2.6}
\end{equation*}
$$

We claim that $z^{\prime}(t) \leq 0$ eventually. This is obvious from equation (1.1) in the case $n=1$. For $n \geq 2$, we suppose on the contrary, that $z^{\prime}(t)>0$ for $t \geq t_{1} \geq t_{0}$. Then
(2.7) $\quad(1-p(t)) z(t) \leq z(t)-p(t) z(\tau(t))=x(t)-p(t) p(\tau(t)) x(\tau(\tau(t))) \leq x(t)$
for $t \geq t_{2} \geq t_{1}$. Since $z(t)$ is positive and increasing, it follows from Lemma 1.3 and (2.7), that

$$
\begin{equation*}
x(t) \geq \frac{\lambda}{(n-1)!} t^{n-1} x^{(n-1)}(t), t \geq t_{2} \tag{2.8}
\end{equation*}
$$

Using (2.8), we find for $t \geq t_{2} \geq t_{1}$,

$$
q(t) x(\sigma(t)) \geq q(t) \frac{[1-p(\sigma(t))] \lambda}{(n-1)!}(\sigma(t))^{n-1} z^{(n-1)}(\sigma(t))
$$

and so

$$
z^{(n)}(t) \leq-q(t)\left(\frac{[1-p(\sigma(t))] \lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}\left[z^{(n-1)}(\sigma(t))\right]^{\alpha}
$$

Using the above inequality in (2.5), we see that $z^{(n-1)}(t)$ is an eventually positive (see (2.6)) solution of

$$
z^{(n)}(t)+q(t)\left(\frac{[1-p(\sigma(t))] \lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}\left[z^{(n-1)}(\sigma(t))\right]^{\alpha} \leq 0
$$

If we chose $z^{(n-1)}(t)=w(t)$, then

$$
w^{\prime}(t)+q(t)\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}[1-p(\sigma(t))]^{\alpha}(\sigma(t))^{\alpha(n-1)} w^{\alpha}(\sigma(t)) \leq 0
$$

for some $t_{3} \geq t_{2}$ and hence by (2.6), we have

$$
w^{\prime}(t)+c(t)[w(\sigma(t))]^{\alpha} \leq 0, \text { for } t \geq t_{3} .
$$

Therefore by Lemma 1.1, (2.1) has eventually positive solution, this is a contradiction. Hence, $z^{\prime}(t) \leq 0$ eventually.
Since $z^{\prime}(t) \leq 0$ eventually in Lemma 1.2, we must have $m=0$ and

$$
\begin{equation*}
(-1)^{k} z^{(k)}(t)>0, \quad 0 \leq k \leq n-1, \quad t \geq t_{0} \tag{2.9}
\end{equation*}
$$

If n is even, (2.9) yields to contradiction (2.6). This proves part (a) of the theorem.
Now, let n be odd. Assume further that $x(t)$ does not tend to zero as $t \rightarrow \infty$. As $z^{\prime}(t) \leq 0$ eventually, we have $z(t) \downarrow c$ as $t \rightarrow \infty$, where $0<c<\infty$. Then, there exists $\varepsilon>0$ and an integer $t_{3}>t_{0}$ such that

$$
0<\varepsilon<c \frac{1-P_{1}}{1+P_{1}}<c
$$

and

$$
\begin{equation*}
c-\varepsilon<z(t) \leq z(\tau(t))<c+\varepsilon, \quad t \geq t_{3} \tag{2.10}
\end{equation*}
$$

Thus, from (2.7) and (2.10), we find for $t \geq t_{3}$,
(2.11) $x(t) \geq z(t)-p(t) z(\tau(t)) \geq z(t)-P_{1} z(\tau(t))>(c-\varepsilon)-P_{1}(c+\varepsilon)>c_{1} z(t)$,
where $c_{1}=\left[(c-\varepsilon)-P_{1}(c+\varepsilon)\right] /(c+\varepsilon) \in(0,1)$. Using (2.11) and Lemma 1.3, we get for $t \geq t_{4} \geq t_{3}$,

$$
\begin{equation*}
x(t)>c_{1} z(t) \quad>c_{1} \frac{\lambda}{(n-1)!} t^{n-1} z^{(n-1)}(t) \tag{2.12}
\end{equation*}
$$

By (2.12), we obtain for $t \geq t_{5} \geq t_{4}$,

$$
q(t) x(\sigma(t)) \geq q(t) c_{1} \frac{\lambda}{(n-1)!}(\sigma(t))^{n-1} z^{(n-1)}(\sigma(t)) .
$$

There, we have

$$
z^{(n)}(t)+q(t)\left(c_{1}\right)^{\alpha}\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}\left[z^{(n-1)}(\sigma(t))\right]^{\alpha} \leq 0 .
$$

Using the above inequality in (2.5), we see that $z^{(n-1)}(t)$ is an eventually positive (see (2.6)) solution of

$$
w^{\prime}(t)+q(t) c_{2}\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)} w^{\alpha}(\sigma(t)) \leq 0,
$$

where $w(t)=z^{(n-1)}(t)$ and $c_{2}=\left(c_{1}\right)^{\alpha}$. Therefore by Lemma 1.1, (2.1) has eventually positive solution, this is a contradiction. The proof of part (b) is complete.

Theorem 2.2. Let $-1<-P_{2} \leq p(t) \leq 0$, where $P_{2}>0$ is a constant. If the differential equation

$$
\begin{equation*}
w^{\prime}(t)+c(t)[w(\sigma(t))]^{\alpha}=0 \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
c(t)=q(t)\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}[w(\sigma(t))]^{\alpha} \tag{2.14}
\end{equation*}
$$

is oscillatory, then each monotone solution of (1.1) tends to zero as $t \rightarrow \infty$.
Proof. Let $x(t)$ be a monotone solution of (1.1). The case $n=1$ can be proved easily. Assume that $n \geq 2$ and $x(t)>0, x(\tau(t))>0$ and $x(\sigma(t))>0$, for all $t \geq t_{0} \geq T_{0}$. Furter, we assume that $x(t)$ does not tend to zero as $t \rightarrow \infty$. Setting $z(t)=x(t)+p(t) x(\tau(t))$, we get $z(t) \leq x(t)$, and also inequality (2.5). Since x is monotone, we have either $x^{\prime}(t) \leq 0$ or $x^{\prime}(t)>0$ eventually.
We claim that $x^{\prime}(t) \leq 0$ eventually. This is obvious from equation (1.1) in the case $n=1$. For $n \geq 2$, we suppose on the contrary, that $x^{\prime}(t)>0$ for $t \geq t_{1} \geq t_{0}$. Since $-1<-P_{2} \leq p(t) \leq 0$, we get for $t \geq t_{2} \geq t_{1}$,

$$
\begin{equation*}
z(t) \geq x(t)+p(t) x(t) \geq\left(1-P_{2}\right) x(t)>0 \tag{2.15}
\end{equation*}
$$

Thus, $z^{\prime}(t)$ is of one sign, i.e., either $z^{\prime}(t) \leq 0$ or $z^{\prime}(t)>0$ holds for $t \geq t_{3} \geq t_{2}$ by Lemma 1.2.
(i) Assume that $z^{\prime}(t) \leq 0$. Then $z(t)$ converges to a constant $z_{1} \geq 0$. If $z_{1}=0$, by (2.15), $x(t)$ converges to 0 , this contradicts to $x^{\prime}(t) \geq 0, x(t)>0$. Hence, $z_{1}>0$. Given $\varepsilon_{1} \in\left(0, z_{1}\right)$, there exists $t_{4} \geq t_{3}$ such that

$$
\begin{equation*}
z_{1}-\varepsilon_{1}<z(t)<z_{1}+\varepsilon_{1}, t \geq t_{4} \tag{2.16}
\end{equation*}
$$

Let m be as in Lemma 1.3. For $t \geq t_{5} \geq 2^{n-1} t_{4}$, using (2.16) and Lemma 1.3 successively, we obtain

$$
\begin{equation*}
x(t) \geq z(t) \geq \frac{\lambda}{(n-1)!} t^{n-1} z^{(n-1)}(t), t \geq t_{5} \tag{2.17}
\end{equation*}
$$

By (2.17), we obtain for $t \geq t_{6} \geq t_{5}$,

$$
z^{(n)}(t) \leq-q(t)\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}\left[z^{(n-1)}(\sigma(t))\right]^{\alpha}
$$

If we chose $z^{(n-1)}(t)=w(t)$, then

$$
w^{\prime}(t)+q(t)\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}[w(\sigma(t))]^{\alpha} \leq 0 .
$$

Using the above inequality in (2.5), we see that $z^{(n-1)}(t)$ is an eventually positive (see (2.6)) solution of

$$
\begin{equation*}
w^{\prime}(t)+q(t)\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}[w(\sigma(t))]^{\alpha} \leq 0 . \tag{2.18}
\end{equation*}
$$

Therefore by Lemma 1.1, (2.13) has eventually positive solution, this is a contradiction.
(ii) Assume that $z^{\prime}(t)>0, t \geq t_{7}$. Then by Lemma 1.3, we have for $t \geq t_{7}$

$$
z(t) \geq \frac{\lambda}{(n-1)!} t^{n-1} z^{(n-1)}(t), t \geq t_{7}
$$

and the inequality

$$
z^{(n)}(t)+q(t)\left(\frac{\lambda}{(n-1)!}\right)^{\alpha}(\sigma(t))^{\alpha(n-1)}\left[z^{(n-1)}(\sigma(t))\right]^{\alpha} \leq 0
$$

where $z^{(n-1)}(t)=w(t)$, has an eventually positive solution This is a contradiction.
Consequently, $x^{\prime}(t) \leq 0$ eventually, which tells us that $x(t)$ is nonincreasing and bounded from below, and so coverges to a constant $x_{0} \geq 0$. If $x_{0}=0$, then the result is true. Assume that $x_{0}>0$. Then we have

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} z(t)=\left(1+\liminf _{t \rightarrow \infty} p(t)\right) x_{0} \geq\left(1-P_{2}\right) x_{0}>0 . \tag{2.19}
\end{equation*}
$$

Hence, $z(t)$ is eventualy positive and (2.6) holds. By Lemma 1.2, either $z^{\prime}(t)<0$ or $z^{\prime}(t)>0$ holds for $t \geq t_{8}$. Similar to the above proof of (i) and (ii), we can also obtain contradiction. The case when $x(t)$ is monotone and eventualy negative can be verified similarly. The proof is complete.

References

1. R. P. Agarwal and S. R. Grace, Oscillation of Certain Functional Differential Equations, Computers \& Math. Applic. 38, 143-153, (1999).
2. L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
3. S. R. Grace and B. S. Lalli, Oscillation Theorems for $n^{\text {th }}$ Order Delay Differential Equations, J. Math. Anal. Appl. 91, 352-366, (1983).
4. I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
5. I. T. Kiguratze, On oscillatory solutions of some ordinary differential equations, Soviet Math. Dokl.144, 33-36, (1962).
6. G. S. Ladde, V. Lakshmıkantham and B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Macel Dekker, New York, 1987.
7. W. T. Li and S. S. Cheng, An Oscillation Theorem for Higher Order Nonhomogeneous Superlinear Differential Equations, Appl. Math. E-Notes, 3, 58-65, (2003).
8. X. H. Tang, Oscillation for first order superlinear delay differential equations, J. London Math. Soc. (2) 65, 115-122 (2002).
9. M. K. Yildiz, Oscillation Results of Higher Order Nonlinear Neutral Delay Differential Equations With Oscillating Coefficients, Adv. Dynam. Syst. Appl. (ADSA), (accepted), (2008).
