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Abstract. In this paper, we shall consider higher order nonlinear neutral delay

differential equation of the type

[() + ()(())]() + ()[(())] = 0  ≥ 0  ∈ N
where   ∈ ([0∞) [0∞))    ∈([0∞)R) ()   lim→∞ () =∞

()   lim→∞ () = ∞ and  ∈ (0∞) is a ratio of odd positive integers.
We obtain sufficient conditions for the oscillations of all solutions of this equa-

tion.
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1. Introduction

We consider the following higher order nonlinear neutral delay differential equa-

tion:

(1.1) [() + ()(())]() + ()[(())] = 0  ≥ 0  ∈ N
where   ∈ ([0∞) [0∞))    ∈([0∞)R) ()   lim→∞ () =∞

()   lim→∞ () =∞ and  ∈ (0∞) is a ratio of odd positive integers. If
0    1 equation (11) is called sublinear equation, when   1 it is called

superlinear equation.

Recently, there have been a lot of studies concerning the behaviour of the oscil-

latory differential equations, see [1-9] and the reference cited therein. In [2,4,6,8]

several authors have investigated the following first order nonlinear delay dif-

ferential equation of the form,

(1.2) 0() + ()[(())] = 0  ≥ 0
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where  ∈ ([0∞) [0∞))  ∈ ([0∞)R) ()   lim→∞ () =∞ and

 ∈ (0∞) is a ratio of odd positive integers.
When 0    1 it is shown that every solution of sublinear equation (12)

oscillates if and only if

(1.3)

∞Z
=0

() =∞

When  = 1 (12) reduces to the linear delay differential equation

(1.4) 0() + ()(()) = 0  ≥ 0

Recently, the oscillatory behavior of (14) has been discussed extensively in the

literature. A classical result is (see[2,4]) that every solution of (14) oscillates if

lim inf
→∞

Z
()

() 
1




In [6], when   1 Tang obtained the oscillatory behavior of equation (12)

It is shown that, let () is continuously differentiable and 0() ≥ 0 Further,
suppose that there exist a continuously differentiable function () such that

0()  0 and lim
→∞

() =∞

lim sup
→∞

∙
0(())0()

0()

¸
 1

and

lim inf
→∞

∙
()−()

0()

¸
 0

Then every solution of superlinear equation (12) oscillates. Furthermore, Tang

considered the following special form of (12)

(1.5) 0() + ()[(− )] = 0  ≥ 0

which was obtained, if exists   −1 ln such that

(1.6) lim inf
→∞

[() exp(−)]  0

then every solution of (15) oscillates.

In [1] Agarwal and Grace, in [3] Grace and Lalli studied oscillatory behavior of

certain higher order differential equations.

Our aim in this paper is to obtain sufficient conditions for the oscillation of all

solutions of (11).

We need the following result for our subsequent discussion.
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Lemma 1.1. (See[8].)Assume that for large 

() 6= 0 for  ∈ [ ∗]

where ∗ satisfies (∗) =  Then

0() + ()[(())] = 0  ≥ 0

has an eventually positive solution if and only if the corresponding inequality

0() + ()[(())] ≤ 0  ≥ 0

has an eventually positive solution.

Lemma 1.2. (See[5].)Let  be a positive and -times diferentiable function

on [0∞). If  is of constant sign for  ≥  and not identically zero on any

interval [∗∞) for some ∗ ≥ 0, then, there exists a  ≥ 0 and an integer ,

0 ≤  ≤  with ( +) odd for ()() ≤ 0, or ( +) even for ()() ≥ 0,
and such that for every  ≥ 0,

 ≤ − 1 implies (−1)+()()  0,  = + 1 · · ·  − 1,

and

  0 implies ()()  0  = 0 1 · · · − 1

Lemma 1.3. (See[7].)Let  be as in Lemma 1.2. In addition lim→∞() 6= 0
and (−1)()()() ≤ 0 for every  ≥  then for every  0    1 the

following hold:

() ≥ 

(− 1)! 
−1(−1)(); for all large 

2. Sufficient Conditions for Oscillations of Equation (1.1)

Theorem 2.1. (a) Let  be even and 0 ≤ ()  1 for  ≥ 0. If the diferential

equation

(2.1) 0() + ()[(())] = 0

where

(2.2) () = ()

µ


(− 1)!
¶
[1− (())](())(−1)

is oscillatory, then all solutions of (11) are oscillatory.

57



(b) Let  be odd and 0 ≤ () ≤ 1  1 where 1 is a constant. If the

diferential equation

(2.3) 0() + ()[(())] = 0

where

(2.4) () = ()2

µ


(− 1)!
¶
(())(−1)[(())]

is oscillatory, then every solution of (11) either oscillates or tends to zero as

→∞.

Proof. Let () be a nonoscillatory solution of (11), with ()  0, (())  0

and (())  0, for all  ≥ 0 ≥ 0. Setting () = () + ()(()), we get

() ≥ ()  0 and

(2.5) ()() = −()(())  0
for  ≥ 0. Then by Lemma 12, 

()() is of constant sign for  = 1 2 3  ,

and that for  ≥ 2
(2.6) (−1)()  0   ≥ 0

We claim that 0() ≤ 0 eventually. This is obvious from equation (11) in the

case  = 1. For  ≥ 2, we suppose on the contrary, that 0()  0 for  ≥ 1 ≥ 0.

Then

(2.7) (1− ())() ≤ ()− ()(()) = ()− ()(())((())) ≤ ()

for  ≥ 2 ≥ 1. Since () is positive and increasing, it follows from Lemma 13

and (27), that

(2.8) () ≥ 

(− 1)! 
−1(−1)()  ≥ 2

Using (28), we find for  ≥ 2 ≥ 1,

()(()) ≥ ()
[1− (())]

(− 1)! (())−1(−1)(())

and so

()() ≤ −()
µ
[1− (())]

(− 1)!
¶
(())(−1)

h
(−1)(())

i
.

Using the above inequality in (25), we see that (−1)() is an eventually positive
(see (26)) solution of

()() + ()

µ
[1− (())]

(− 1)!
¶
(())(−1)

h
(−1)(())

i
≤ 0
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If we chose (−1)() = (), then

0() + ()

µ


(− 1)!
¶
[1− (())](())(−1)(()) ≤ 0

for some 3 ≥ 2 and hence by (26) we have

0() + ()[(())] ≤ 0 for  ≥ 3

Therefore by Lemma 11, (21) has eventually positive solution, this is a contra-

diction. Hence, 0() ≤ 0 eventually.
Since 0() ≤ 0 eventually in Lemma 12, we must have  = 0 and

(2.9) (−1)()()  0 0 ≤  ≤ − 1  ≥ 0

If  is even, (29) yields to contradiction (26). This proves part () of the

theorem.

Now, let  be odd. Assume further that () does not tend to zero as  → ∞

As 0() ≤ 0 eventually, we have () ↓  as  → ∞ where 0    ∞ Then,

there exists   0 and an integer 3  0 such that

0    
1− 1

1 + 1
 

and

(2.10) −   () ≤ (())  +   ≥ 3

Thus, from (27) and (210) we find for  ≥ 3

(2.11) () ≥ ()−()(()) ≥ ()−1(())  (−)−1(+)  1()

where 1 = [( − ) − 1( + )]( + ) ∈ (0 1) Using (211) and Lemma 13,
we get for  ≥ 4 ≥ 3

(2.12) ()  1()  1


(−1)! 
−1(−1)()

By (212) we obtain for  ≥ 5 ≥ 4

()(()) ≥ ()1


(− 1)! (())
−1(−1)(())

There, we have

()() + ()(1)


µ


(− 1)!
¶
(())(−1)

h
(−1)(())

i
≤ 0

Using the above inequality in (25), we see that (−1)() is an eventually positive
(see (26)) solution of

0() + ()2

µ


(− 1)!
¶
(())(−1)(()) ≤ 0
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where () = (−1)() and 2 = (1)
 Therefore by Lemma 11, (21) has

eventually positive solution, this is a contradiction. The proof of part () is

complete.

Theorem 2.2. Let −1  −2 ≤ () ≤ 0 where 2  0 is a constant. If the

differential equation

(2.13) 0() + ()[(())] = 0

where

(2.14) () = ()

µ


(− 1)!
¶
(())(−1)[(())]

is oscillatory, then each monotone solution of (11) tends to zero as →∞.

Proof. Let () be a monotone solution of (11). The case  = 1 can be proved

easily. Assume that  ≥ 2 and ()  0, (())  0 and (())  0, for all

 ≥ 0 ≥ 0 Furter, we assume that () does not tend to zero as  → ∞

Setting () = () + ()(()), we get () ≤ () and also inequality (25).

Since  is monotone, we have either 0() ≤ 0 or 0()  0 eventually.
We claim that 0() ≤ 0 eventually. This is obvious from equation (11) in the

case  = 1. For  ≥ 2, we suppose on the contrary, that 0()  0 for  ≥ 1 ≥ 0.

Since −1  −2 ≤ () ≤ 0 we get for  ≥ 2 ≥ 1,

(2.15) () ≥ () + ()() ≥ (1− 2)()  0

Thus, 0() is of one sign, i.e., either 0() ≤ 0 or 0()  0 holds for  ≥ 3 ≥ 2
by Lemma 12.

(i) Assume that 0() ≤ 0 Then () converges to a constant 1 ≥ 0 If 1 = 0
by (215) () converges to 0, this contradicts to 0() ≥ 0 ()  0 Hence,

1  0 Given 1 ∈ (0 1), there exists 4 ≥ 3 such that

(2.16) 1 − 1   ()  1 + 1  ≥ 4

Let m be as in Lemma 13 For  ≥ 5 ≥ 2−14 using (216) and Lemma 13
successively, we obtain

(2.17) () ≥ () ≥ 

(− 1)! 
−1(−1)()  ≥ 5

By (217), we obtain for  ≥ 6 ≥ 5

()() ≤ −()
µ



(− 1)!
¶
(())(−1)

h
(−1)(())

i


If we chose (−1)() = (), then

0() + ()

µ


(− 1)!
¶
(())(−1)[(())] ≤ 0
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Using the above inequality in (25), we see that (−1)() is an eventually positive
(see (26)) solution of

(2.18) 0() + ()

µ


(− 1)!
¶
(())(−1)[(())] ≤ 0

Therefore by Lemma 11, (213) has eventually positive solution, this is a con-

tradiction.

(ii) Assume that 0()  0  ≥ 7 Then by Lemma 13 we have for  ≥ 7

() ≥ 

(− 1)! 
−1(−1)()  ≥ 7

and the inequality

()() + ()

µ


(− 1)!
¶
(())(−1)

h
(−1)(())

i
≤ 0

where (−1)() = (), has an eventually positive solution This is a contradic-

tion.

Consequently, 0() ≤ 0 eventually, which tells us that () is nonincreasing and
bounded from below, and so coverges to a constant 0 ≥ 0 If 0 = 0 then the
result is true. Assume that 0  0 Then we have

(2.19) lim inf
→∞

() = (1 + lim inf
→∞

())0 ≥ (1− 2)0  0

Hence, () is eventualy positive and (26) holds. By Lemma 12, either 0()  0
or 0()  0 holds for  ≥ 8 Similar to the above proof of (i) and (ii)  we can also

obtain contradiction. The case when () is monotone and eventualy negative

can be verified similarly. The proof is complete.
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