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Abstract. In this paper, we consider the unsteady flow of an incompressible

electrically conducting micropolar fluid through a circular porous pipe subjected

to periodic suction/injection at the walls of the tube and in the presence of

a transverse magnetic field. Under the Stokesian assumption and using the

similarity transformations, the stream function and microrotation components

are obtained in terms of Bessel’s functions. The variation of skin friction with

respect to micropolar parameters and Hartman’s number, suction parameter

are studied and depicted through graphs.
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Nomenclature:

 Radius of the cylinder
_

0 Applied magnetic field

 Cross viscosity parameter ( (+ ))
_

 Electric field
_

 Current density

 Microgyration

 Hartmann number
³
 = 0

p
 (+ )

´
 Pressure
_
 Velocity vector

 Radial distance

 Couple stress parameter
¡
2

¢
 Suction Reymnolds number (0 (+ ))
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 Time

( ) ( ) Velocity components

0 Entrance velocity

0 Suction velocity

 Gyration parameter
¡
Ω2

¢
 Electrical conductivity

0 Magnetic permeability

Ω Suction frequency

     Material constants (viscosity coefficients)
_
 Microrotation vector

( ) Microrotation component

 Frequency parameter (Ω0)

1. Introduction

The study of unsteady flow in a porous channel or tubes has received much

attention in recent years because of its various applications in biomedical engi-

neering as well as in many other engineering areas such as transpiration cooling

gaseous diffusion technology, cooling of rocket etc. The steady flow in a straight

channel with porous walls was first studied by Berman [1]. He gave a series so-

lution for the laminar two dimensional flow between two parallel porous plates

driven by uniform injection and suction. The problem of finding a similarity so-

lution, by using an analytic perturbation method, of the steady flow in a straight

tube with circular cross section was first treated by Yuan et al [2]. Terrill [3,4]

gave an exact solution for the laminar flow in a pipe of circular cross section.

The same problem was studied by Tsangaris and Kondaxakis [5] for unsteady

wall suction and/injection.

In recent years, the flows of fluids between parallel plates or tubes have re-

ceived new attention within the more general context of magnetohydrodynamics

(MHD). Terill and Srestha [6] studied the laminar flow between parallel plates

in the presence of a magnetic field. Attia and Kotb [7] studied the MHD flow

between parallel plates with heat transfer. The study of non-Newtonian fluid

flows has gained much attention by the researchers because of their applications

in biology, physiology, technology and industry. In addition, the effects of mag-

netic field on the non-Newtonian fluid also have great importance in engineering

applications; for instance, MHD generators, accelerators, aerodynamics heating,

electrostatic precipitation, polymer technology, petroleum industry, purification

of crude oil and fluid droplets sprays, plasma studies and geothermal energy

excitations etc. El-Sakka and El-Dabe [8] have studied the unsteady MHD flow

of elastico-viscous fluid in a circular pipe. Moustafa El-Shahed [9] considered

the effect of a transverse magnetic field on the unsteady flow of a generalized

second grade fluid through a porous medium in a circular tube. Attia [10] has

investigated the unsteady flow of a dusty non-Newtonian Bingham fluid through

a circular pipe. Khan et al [11] have obtained an exact solution for the MHD

flow of a generalized Oldroyd-B fluid in a circular pipe.
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The theory of micropolar fluids initiated by Eringen [12] exhibits some micro-

scopic effects arising from the local structure and micro motion of the fluid

elements. Further, they can sustain couple stresses and include classical New-

tonian fluid as a special case. These fluids can support stress moments and

body moments and are influenced by spin inertia. Several investigators have

made theoretical study of micropolar fluid flow in the presence of a transverse

magnetic field. Kasiviswanathan and Gandhi [13] have studied a class of exact

solutions for the MHD flow of a micropolar fluid confined between two infinite,

insulated, parallel, non-coaxially rotating disks. Ahmadi and Shahinpoor [14]

have studied the criteria for universal stability of the unsteady motion of an in-

compressible, electrically conducting linear micropolar fluid. Rama Bhargava et

al. [15] have analyzed the effect of temperature dependent heat sources on the

fully developed free convection electrically conducting micropolar fluid between

two parallel porous vertical plates in a strong cross magnetic field.

In this paper we consider the unsteady flow of an incompressible micropolar

fluid through a circular tube with porous wall in the presence of a transverse

magnetic field.

2. Formulation of the Problem

Consider the flow of an incompressible electrically conducting micropolar fluid

through a porous circular pipe of radius  along the direction of axis of the

tube. Assume that there is a periodic suction or injection velocity 0
Ω at

the wall of the tube. Choose the cylindrical polar coordinate system (  )

with the origin at the center of the tube and z-axis along the axis of the tube.

The flow is subjected to a constant magnetic field ̄0 perpendicular to the wall

and no external electric field is applied. Assume that the magnetic Reynolds

number is vary small, so that induced magnetic field and electric field produced

by the motion of the electrically conducting fluid are negligible. Under the

above assumption and using Stokes approximation the equations governing the

incompressible MHD micropolar flow in the absence of body forces and body

couples are given by

(1) div ̄ = 0

(2) 
̄


= −grad+ curl̄ − (+ )curl curl̄ + ̄ × ̄0

(3) 
̄


= −2̄ + curl̄ − curl curl̄ + (+  + )grad div̄

where ̄ is the velocity vector, ̄ is the micro rotation vector and  is the fluid

pressure,  and  are the fluid density and micro gyration parameter, ̄0 is the
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magnetic field and ̄ is the current density. , , ,  and  are the material

constants (viscosity coefficients) which satisfy the following inequalities.

(4) 2+  ≥ 0  ≥ 0 3+  +  ≥ 0  ≥ ||
The current density ̄ , applied magnetic field ̄0 and electric field ̄ are related

by Maxwell’s equations

(5)
curl̄ = −̄0


 div̄0 = 0 curl̄0 = 0̄ 

div̄ = 0 ̄ = (̄ + ̄ × ̄0)

where  is Electrical conductivity and 0is magnetic permeability.
Since the flow is symmetric all the quantities are independent of . We choose

velocity vector ̄ and micro rotation ̄ in the form

(6) ̄ = {( )̄ + ( )̄}Ω ̄ =
( )


̄

Ω

Substituting Eq. (6) in Eqs.(1) - (3), we get

(7)



+




+




= 0

(8) Ω = −

− 






+ (+ )




(



− 


)− 2

0

(9) Ω = −

+








− (+ )






((




− 


))− 2

0

(10) Ω = −2 + 



− 


+ 2

where 2 =
2

2
− 1






+

2

2
is the Stokes operator.

The boundary conditions are

(11)
( ) = 0 ( ) = 0 and ( ) = 0   = 

( ) = 0 

= 0 at = 0 and

()


= 0 as → 0

Introducing the following non-dimensional scheme

(12)  = ̃  = 0̃  = 0̃  = 0̃  =  2
0   =

̃

0
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and the stream function ( ) through,

(13) ( ) =
1






and( ) = −1







in to the Eqs. (8) - (9) and eliminating pressure from the resulting equations,

we get (after dropping tildes)

(14) 2 = −2 +4 −22

(15) (2+ ) = 2 +2

where,  = 
+

is the cross viscosity parameter,  = 2


is the couple stress

parameter,  = 0
+

is the Suction Reynolds number  = Ω
0
is the frequency

parameter,  = Ω2


is the gyration parameter,  = 0

q


+
is the Hart-

mann number corresponding to micropolar fluid.

From Eq. (14) and Eq. (15) we have

(16)  = −
2 + 

21
2
2

[4 − (21 + 22)
2]−2

Substituting  in Eq. (14) we get

(17) 2(2 − 21)(
2 − 22) = 0

where

(18) 21 + 22 = (2− )+2 + ( + )

(19) 21
2
2 = (2+ )(2 + )

3. Solution of the Problem

Following Terril [3], we can write the stream function and microrotation com-

ponents as

(20)  =

µ
0

0
− 

¶
 () and  =

µ
0

0
− 

¶
()

 () and () are functions of  to be determined and 0 average entrance

velocity.
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Substituting Eq. (20) in Eq. (16) and Eq. (18) we get

(21) 2(2 − 21)(
2 − 22) = 0

(22) () = −
2 + 

21
2
2

[4 − (21 + 22)
2 ]−2

where 2 =
2

2
− 1






The boundary conditions in terms of  and  are

(23)
 (1) = 1  0(1) = 0 (1) = 0  (0) = 0

2 = 0 at  = 0 and
()


= 0 as → 0

The general solution of Eq. (21) is

(24)  = 1 + 2
2 + 31(1) + 51(1) + 41(2) + 61(2)

where 1 2 3 4 5 and 6 are arbitrary constants and 1(1) and 1(1)

are modified Bessel functions of the first-order of first and the second kind

respectively. Substituting  in Eq. (20), we get

(25)
 = (2 + − 21)[31(1) + 51(1)]

+(2 + − 22)[41(2) + 61(2)]]

Using the boundary conditions (23) we get

(26) 1 = 5 = 6 = 0

(27) 2 +
1

2
[2(1) + 0(1)]3 +

2

2
[2(2) + 0(2)]4 = −1

(28) 2 + 31(1) + 41(2) = 1

(29) 3(
2 +  − 21)1(1) + 4(

2 +  − 22)1(2) = 0

Solving these equations the constants 2 3 4 can be obtained.
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4. Pressure Distribution

From Eq. (8) and Eq. (9), the non dimensional pressure is given by

(30)





=
1


[−(2 + ) + +2 ]





=
(0
0
− )


[−(2 + ) 0 + 0 +




2 ]

On integrating Eq. (30) and after simplification we have

(31)   = −(2 + )

½
2

2
+ (

0

0
− )2

¾
2 + 0

5. Skin Friction

The stress tensor  for micropolar fluid is given by

(32)  = (−+ ̄) + (2+ ) + ( − )

where and 2 are the components of the microrotation vector and the vor-

ticity vector respectively,  are the components of the rate of strain,  is

the alternating symbol and comma denotes covariant differentiation.

The shear stress  is given by

(33)  =
V0(+ )

 2
(
0

0
− )(−2 + )

Hence the coefficient of skin friction  (= 2
2
0 )on the wall of the cylinder

 = 1 is given by

(34)  =
(2 + )


{21(1) + 31(2)}

6. Results and Discussions

The system of equations (26) - (29) is solved using MATHEMATICA and the

stream function  in Eq. (20) is calculated from Eq.(24). Then the flow pattern

is obtained for different times at /4, /2,  and 3/2 over a cycle of suction

by taking real part of  and is shown in Fig.2. As it is expected, the figure

shows that the flow is of oscillatory nature over a period 2.

To explicitly see the effects of various parameters like cross viscosity parameter

(), couple stress parameter (), suction Reynolds number (Re), magnetic pa-

rameter (), gyration parameter () and frequency parameter () on the skin
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friction (shear stress at the wall), coefficient of skin friction given in Eq. (34)

is numerically evaluated and the results are graphically presented in Figs. 3 -7.

If  6= 0, then the geometric parameters 1 and 1 are complex which are not

conjugate to each other. If one of the values of 1 and 2 is real, the other value

need not be real. Hence the velocity field, microrotation field and skin friction

are complex. The real parts of these quantities i.e. when suction is in the form

of a cosine oscillation are taken and the skin friction is numerically evaluated.

The effect of couple stress parameter  on the skin friction is shown in Fig. 3

for  = 5  = 04  = 06 = 10 and  = 10. It can be observed that as the

couple stress parameter  increases, the skin friction is decreasing. In the limit

as  → ∞ (i.e.  → 0 and  → 0), the governing equations (8-10) reduce to

the corresponding equations for a viscous fluid. Hence, viscous fluids have less

skin friction compared to that of micropolar fluids. This is expected because

of the rotational motion arising from the micromotion of the fluid molecules in

micropolar fluids. Similarly as cross viscosity parameter  increases the skin

friction is decreasing. The variation of skin friction with  for different values

of  is given in Fig. 4 for the values of  = 15  = 04  = 06 = 10

and  = 10 . It can be seen from this figure that as the gyration parameter 

increases, the skin friction is decreasing. When  increases, radius of the volume

element increases or angular velocity of the particle decrease and hence skin

friction decreases.

Fig. 5 shows the effect of suction Reynolds number  on the skin friction for

the values of  = 5  = 04  = 15 = 10 and  = 10. It is interesting to

note that as the suction velocity increases (i.e  increases), the skin friction is

decreasing. This observation is similar to that of viscous fluids. There is sudden

decrease from 58 to 20 in the value of the skin friction when the value of  is

increased from 02 to 06. Hence the skin friction is very sensitive to the suction

Reynolds number.

The effect of the magnetic parameter () on the skin friction is shown in Fig.

6 for the values of  = 5  = 04  = 15  = 04 and  = 10. It can be

noted from this figure that skin friction increases with the increase in magnetic

parameter M. This happens because of the imposing of a magnetic field normal

to the flow direction. This magnetic field gives rise to a resistive force and slows

down the movement of the fluid. The variation of skin friction with frequency

parameter is shown in Fig. 7 for  = 5  = 04  = 15  = 04 and  = 10.

It is clear from this figure that the skin friction is increasing with the frequency

parameter increases.

7. Conclusions

The flow generated in a circular cylinder due to periodic suction/injection ap-

plied on the wall of the tube under a constant magnetic field is considered. It

can be noted that applied suction at the surface and the couple stress parame-

ter decreases the skin friction. Where as the frequency of suction, the gyration

parameter and the magnetic field increases the skin friction.
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Figures

Figure 1. Schematic diagram

(a) (b)
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(c) (d)

Figure 2. Stream lines above the centre line of the pipe for  = 5

 = 04  = 15  = 06 = 10  = 10 at time (a)  = 4,

(b)  = 2, (c)  =  (d)  = 32.

Figure 3. Variation of skin friction with couple stress parameter 

for  = 5,  = 04,  = 06,  = 10,  = 10
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Figure 4. Variation of skin friction with gyration parameter 

for  = 15,  = 04,  = 06,  = 10,  = 10

Figure 5. Variation of skin friction with Suction Reynolds number 

for  = 5  = 04  = 15  = 10  = 10
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Figure 6. Variation of skin friction with Hartmann number 

for  = 5  = 04  = 06  = 15  = 10

Figure 7. Variation of skin friction with frequency parameter 

for  = 5  = 04  = 06  = 10  = 15
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