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Abstract. In this work, we implement some analytical techniques such as Tan,
Tanh, Extended Tanh and Sech methods for solving the nonlinear partial dif-
ferential equation, which contain exponential terms; its name, Dodd�Bullough�
Mikhailov (DBM) equation. These methods can be used as an alternative to
obtain exact solutions of di¤erent types of di¤erential equations which applied
in engineering mathematics.
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1.Introduction

The investigation of exact solutions of nonlinear evolution equations (NLEEs)
plays an important role in the study of nonlinear physical phenomena. In the
past several decades, many e¤ective methods for obtaining exact solutions of
NLEEs have been presented, such as Exp-function method [2-11], Tanh method
[12-23], Sech method [24], Hirota direct method [25], rational hyperbolic method
[26-28], He�s Variational Iteration Method [29-33] and He�s homotopy method
[34-39]andsoon.
The class of equations, namely,
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uxt + f (u) = 0

Play a signi�cant role in many scienti�c applications such as solid-state physics,
nonlinear optics and quantum �eld theory.
The function f(u)takes many forms such as

(1) f (u) =

8>>>><>>>>:
sinu
sinhu
eu

eu + e�2u

e�u + e�2u

that characterize the Sine�Gordon equation, sinh-Gordon equation, Liouville
equation, Dodd�Bullough�Mikhailov equation (DBM), and the Tzitzeica�Dodd�
Bullough (TDB) equation respectively.
In this work, we consider the Dodd�Bullough�Mikhailov (DBM) equation in the
form:

(2) uxt + e
u + e�2u = 0

This equation appears in problems varying from �uid �ow to quantum �eld
theory. For solving this equation and for �nding major solutions, we use the
two transformations:
Transformation 1:

(3) v (x; t) = e�u; u (x; t) = � ln (v (x; t))

Eq. (2) becomes a partial di¤erential eqation, which reads

(4) �vvxt + vxvt + 1 + v4 = 0

To �nd the traveling wave solution of Eq. (4) we introduce the wave variable� =
�x+ �t so that

(5) ���V V 00 + ��V 02 + V + V 4 = 0

where prime denote the di¤erential with respect to �.
Transformation 2:

(6) v (x; t) = eu; u (x; t) = ln (v (x; t))

Eq. (2) becomes a partial di¤erential eqation, which reads



(7) vvxt � vxvt + 1 + v3 = 0

To �nd the traveling wave solution of Eq. (7) we introduce the wave variable� =
�(x� �t) so that

(8) ��2�V V 002�V 02 + 1 + V 3 = 0

where prime denote the di¤erential with respect to �.

2. Summary of methods

2.1. Tanh and Extended Tanh method

We consider nonlinear equation of form:

(9) N
�
V; V 0; V 003; : : :

�
In this section, we give a brief description of the extended tanh method as
follows. We introduce the new independent variables:

(10) Y =

8>><>>:
tanh (�)
coth (�)
tan (�)
cot (�)

! Y 0 =

8>><>>:
1� Y 2
1� Y 2
1 + Y 2

�1� Y 2

Since Y = tanh (�) or coth (�), repeatedly applying chain rule, we have:

d

d�
=

d

dY

dY

d�
=
�
1� Y 2

� d

dY

That leads to the change of derivatives

(12)

d
d� =

�
1� Y 2

�
d
dY

d2

d�2 =
�
1� Y 2

�
d
dY

��
1� Y 2

�
d
dY

�
d2

d�2 =
�
1� Y 2

�
d
dY

��
1� Y 2

�
d
dY

��
1� Y 2

�
d
dY

��
Similarly whenY = tan (�) or Y = � cot (�), we have:

d

d�
=

d

dY

dY

d�
=
�
1 + Y 2

� d

dY

That leads to the change of derivatives



(12)

d
d� =

�
1 + Y 2

�
d
dY

d2

d�2 =
�
1 + Y 2

�
d
dY

��
1 + Y 2

�
d
dY

�
d2

d�2 =
�
1 + Y 2

�
d
dY

��
1 + Y 2

�
d
dY

��
1 + Y 2

�
d
dY

��
In the context of this method, many authors [12-17] used the ansatz

(13) V (�) =
X

M
i=0aiY

i (�)

In order to construct more general, it is reasonable to introduce the following
ansatz [18-22]:

(14) V (�) =
X

M
i=�MaiY

i (�)

In which ai and bi (i = 0, 1. . .M) are all real constants to be determined later.
The balancing number M is a positive integer, which can be determined by
balancing the highest order derivative terms with highest power of nonlinear
terms in Eq. (9). We substitute ansatz Eq. (13) or Eq. (14) into Eq. (9) and
with aid of Eqs. (11-12) with computerized symbolic computation, equating to
zero the coe¢ cients of all power Y �i yields a set of algebraic equations for ai
and bi .

2.2 The Sech method

We now describe the Sech method for the given partial di¤erential equations.
To use this method, we take following steps:
In a similar way of previous method, we consider nonlinear equation of form:

(15) N
�
V; V 0; V 003; : : :

�
We then introduce a new independent variable.

(16) Y = sech(�); Y 0 =
d

d�
sech(�)

One computes:

(17)
Y 0 = d

d� sech (�) = � sech (�) tanh (�) = � sech (�)
p
1� sech2 (�)

Y 00 = d2

d�2 sech (�) = � sech (�) tanh
2 (�) � sech3 (�)

= sech (�)
�
1� sech2 (�)

�
� sech3 (�)

SinceY 0 = �Y
p
(1� Y 2), repeatedly applying chain rule, we have:



d

d�
=

d

dY

dY

d�
= �Y

p
(1� Y 2) d

dY

That leads to the change of derivates:

(18)

d
d� = �Y

p
1� Y 2 d

dY

d2

d�2 = �Y
p
1� Y 2

�
�
p
1� Y 2 d

dY +
Y 2 d

dYp
1�Y 2

� Y
p
1� Y 2 d2

dY 2

�
d2

d�2 = �Y
p
1� Y 2

��
1� 6Y 2

�
d
dY +

�
3Y � 6Y 3

�
d2

dY 2

+Y 2
�
1� Y 2

�
d3

dY 3

�
Introducing the ansatz:

(19) V (�) = S (�) =
X

M
i=0aiY

i (�)

where M is a positive integer parameter.
To determine the parameter M , we usually balance linear terms of highest
order in the resulting equation with the highest order nonlinear terms. With
M determined, equate the coe¢ cients of powers of Y in the resulting equation.
This will give a system of algebraic equation involving theai; (i = 0; : : : ;M).

3. New application of methods

Now, in this case we consider the Dodd�Bullough�Mikhailov (DBM) equation.
For considering this equation, we solve this equation by some exact methods
(Extended Tanh and Sech methods) which was explained in part 2 (summary
of methods).

3.1 Using Tanh, Tan and Extended Tanh methods

In this case, we consider Eq. (8) using Extended Tanh method:
For determining values M in Eq. (13) and Eq. (14), we balance the linear term
of the highest order in Eq. (8) with the highest order nonlinear term that yields
M = 2. Therefore, we have:

3.1.1. Tanh method

(20) V (�) = a0 + a1Y + a2Y
2

where a0; a1 and a2 will be determined and Y (�) will satisfy Eq. (12).
Substituting Eq. (20) into Eq. (8) with the aid of Eq. (11), we get a system of
algebraic equation, for a0; a1; a2; � and�.
Y 0 = 1� 2��2a2a0 + a30 + ��2a21



Y 1 = 2��2a2a1 + 2��
2a1a0 + 3a1a

2
0

Y 2 = 3a0a
2
1 + 8��

2a2a0 + 3a2a
2
0 + 2��

2a22
Y 3 = 6a0a1a2 + 2��

2a2a1 � 2��2a1a0 + a31
Y 4 = 3a21a2 + 3a0a

2
2 � ��2a21 � 6��2a2a0

Y 5 = �4��2a2a1 + 3a1a22
Y 6 = �2��2a22 + a32
Solving the set of equation with the aid of Maple, we obtain:

(21) � = � 3

4�2
; a0 =

1

2
; a1 = 0; a2 = �

3

2

Inserting these values into Eq. (20), we obtain

(22) V (�) =
1

2
� 3
2
tanh2 (�)

Substituting � = � (x� �t) into this result, we obtain:

(23) v (x; t) =
1

2
� 3
2
tanh2 (� (x� �t))

Moreover, from Eq. (21), we know � = � 3
4�2 and then we have:

(24) v (x; t) =
1

2
� 3
2
tanh2

�
�

�
x+

3

4�2
t

��
From Eq. (6), we can obtain u (x; t):

(25) u (x; t) = ln

�
1

2
� 3
2
tanh2

�
�

�
x+

3

4�2
t

���

3.1.2. Tan method

Substituting Eq. (20) into Eq. (8) and with the aid of Eq. (12), we get a system
of algebraic equation, for a0; a1; a2; �and�:
Y 0 = 1� 2��2a2a0 + a30 + ��2a21
Y 1 = 3a1a

2
0 + 2��

2a2a1 � 2��2a1a0
Y 2 = 2��2a22 + 3a2a

2
0 + 3a0a

2
1 � 8��2a2a0

Y 3 = �2��2a1a0 + a31 � 2��2a2a1 + 6a0a1a2
Y 4 = 3a21a2 + 3a0a

2
2 � ��2a21 � 6��2a2a0

Y 5 = �4��2a2a1 + 3a1a22
Y 6 = �2��2a22 + a32
Solving the set of equation with the aid of Maple, we obtain:



(26) � =
3

4�2
; a0 =

1

2
; a1 = 0; a2 =

3

2

Inserting these values into �ansatz�Eq. (20), we obtain:

(27) V (�) =
1

2
+
3

2
tan2 (�)

Substituting � = �(x� �t) into this result, we obtain:

(28) v (x; t) =
1

2
+
3

2
tan2 (� (x� �t))

In addition, from Eq. (26) we know � = 3
4�2 then we have:

(29) v (x; t) =
1

2
+
3

2
tan2

�
�

�
x� 3

4�2
t

��
From Eq. (6), we can obtain u (x; t):

(30) u (x; t) = ln

�
1

2
+
3

2
tan2

�
�

�
x� 3

4�2
t

���

3.1.3. Extended Tanh method

In this case, we consider Eq. (8) using Extended Tanh method:

(31) V (�) = a�2Y
�2 + a�1Y

�1 + a0 + a1Y + a2Y
2

Substituting Eq. (31) into Eq. (8) with the aid of Eq. (12), we get a system of
algebraic equation, for a�2; a�1; a0; a1; a2; � and�:
1

Y 6
= a3�2 � 2��2a2�2

1

Y 5
= �4��2a�1a�2 + 3a�1a2�2

1

Y 4
= 3a0a

2
�2 � 6��2a�2a0 � c�2a2�1 + 3a2�1a�2

1

Y 3
= 3a1a

2
�2 + 6a0a�2a�1 + 2��

2a�1a�2 � 10��2a�2a1 � 2��2a�1a1 + a3�1
1

Y 2
= �16��2a2a�2+6a1a�2a�1+8��2a�2a0+3a0a2�1�4��2a1a�1+3a2a2�2+

3a�2a
2
0 + 2��

2a2�2
Y 0 = 32��2a2a�2+8��

2a1a�1�2��2a2a0+1+3a21a�2+��2a11+a30+3a2a2�1+
6a0a2a�2 + ��

2a2�1 + 6a0a1a�1 � 2��2a�2a0



Y 1 = 6a1a2a�2 + 3a
2
1a�1 + 18��

2a2a�1 � 8��2a�2a1 + 3a1a20 + 2��2a2a1 +
6a0a2a�1 + 2��

2a1a0
Y 2 = �16��2a2a�2 + 2��2a22 + 6a1a2a�1 � 4��2a1a�1 + 3a2a20 + 3a22a�2 +
8��2a2a0 + 3a0a

2
1

Y 3 = a31 � 2��2a1a0 + 2��2a2a1 � 10��2a2a�1 + 3a22a�1 + 6a0a1a2
Y 4 = �6��2a2a0 + 3a21a2 + 3a0a22 � c�2a21
Y 5 = 3a1a

2
2 � 4��2a2a1

Y 6 = a32 � 2��2a22
Solving the set of equation with the aid of Maple, we can distinguish di¤erent
cases namely:
Case 1:

(32) � = � 3

4�2
; a�2 = �

3

2
; a�1 = 0; a0 =

1

2
; a1 = 0; a2 = 0

Inserting these values into �ansatz�Eq. (31), we obtain:

(33) V (�) =
1

2
� 3

2 tanh2(�)

Substituting � = �(x� �t) into this result, we obtain:

(34) v (x; t) =
1

2
+
3

2
tan2 (� (x� �t))

In addition, from Eq. (32), we know � = � 3
4�2 , and then we have:

(35) v (x; t) =
1

2
+
3

2
tan2

�
�

�
x� 3

4�2
t

��
From Eq. (6), we can obtain u (x; t):

(36) u (x; t) = ln

�
1

2
+
3

2
tan2

�
�

�
x� 3

4�2
t

���
Case 2:

(37) � = � 3

4�2
; a�2 = 0; a�1 = 0; a0 =

1

2
; a1 = 0; a2 = �

3

2

Inserting these values into �ansatz�Eq. (31), we obtain:

(38) V (�) =
1

2
� 3
2
tanh2(�)



Substituting � = �(x� �t) into these results, we obtain:

(39) v (x; t) =
1

2
+
3

2
tan2 (� (x� �t))

In addition, from Eq. (37), we know� = � 3
4�2 , and then we have:

(40) v (x; t) =
1

2
+
3

2
tan2

�
�

�
x� 3

4�2
t

��
From Eq. (6), we can obtainu (x; t):

(41) u (x; t) = ln

�
1

2
+
3

2
tan2

�
�

�
x� 3

4�2
t

���
Case 3:

(42) � = � 3

16�2
; a�2 = �

3

8
; a�1 = 0; a0 =

1

4
; a1 = 0; a2 = �

3

8

Inserting these values into �ansatz�Eq. (31), we obtain:

(43) V (�) = �1
4
� 3
8
tanh2 (�)� 3

8
tanh�2 (�)

Substituting � = �(x� �t) into these results, we obtain:

(44) v (x; t) = �3
8
tanh2 (�(x� �t))� 1

4
� 3
8
tanh�2 (�(x� �t))

In addition, from Eq. (42), we know � = � 3
16�2 , and then we have:

(45) v (x; t) = �3
8
tanh2

�
�(x+

3

16�2
t)

�
� 1
4
� 3
8
tanh�2

�
�(x+

3

16�2
t)

�
From Eq. (6), we obtain u (x; t):

(46)

u (x; t) = ln

�
�3
8
tanh2

�
�(x+

3

16�2
t)

�
� 1
4
� 3
8
tanh�2

�
�(x+

3

16�2
t)

��
And at the same we can obtain three solutions using Extended tan method:

(47) u (x; t) = ln

0@1
2
+

3

2 tan2
�
�
�
x� 3

4�2 t
��
1A



(48) u (x; t) = ln

�
1

2
+
3

2
tan2

�
�

�
x� 3

4�2
t

���

(49) u (x; t) = ln

�
3

8
tan2

�
�(x� 3

16�2
t)

�
� 1
4
+
3

8
tan�2

�
�(x� 3

16�2
t)

��

3.2 Using Sec and Sech method

In this case, we consider DBM equation using Sech method that was explains
above:

(50) ��2�V V 002�V 02 + 1 + V 3 = 0

For determining values M in Eq. (19), we balance the linear term of the high-
est order in Eq. (50) with the highest order nonlinear term that yields M=2.
Therefore, we have:

(51) V (�) = a0 + a1Y + a2Y
2

where a0; a1 and a2 will be determined.
Substituting Eq. (51) into Eq. (50), we get a system of algebraic equation, for
Y 0 = 1 + a30
Y 1 = 3a20a1 � ��2a1a0
Y 2 = 3a0a

2
1 + 3a

2
0a2 � 4��2a2a0

Y 3 = 2��2a1a0 + 6a0a1a2 � ��2a1a2 + a31
Y 4 = 3a0a

2
2 + 3a

2
1a2 + 6��

2a2a0 + �
2a21

Y 5 = 4��2a1a2 + 3a1a
2
2

Y 6 = a32 + 2��
2a22

Solving the set of equation, we obtain:

(52) � =
�3
4�2

; a0 = �1; a1 = 0; a2 =
3

2

Inserting these values into �ansatz�Eq. (51), we obtain:

(53) V (�) = �1 + 3
2
sech2(�)

Substituting � = �(x� �t) into this result, we obtain:

(54) v(x; t) = �1 + 3
2
sech2(�(x� �t))



In addition, from Eq. (52), we know, � = �3
4�2 and then we have:

(55) v(x; t) = �1 + 3
2
sech2(�(x+

3

4�2
t))

From Eq. (6), we obtain u (x; t):

(56) u(x; t) = ln

�
�1 + 3

2
sech2(�(x+

3

4�2
t))

�
And at the same we can obtain a solution using sec method:

(57) u(x; t) = ln

�
�1 + 3

2
sec2(�(x� 3

4�2
t))

�

4. Discussion and conclusion

A comparative study between the tan and tanh method, extended tan and
tanh method and the sech method was present. The Dodd�Bullough�Mikhailov
equation illustrates and explores the power of these methods. Many types of
exact solutions with distinct physical structures have been found.
The tanh and the tan method are used for �nding the Dodd�Bullough�Mikhailov
equation�s solutions. These method can be easily extended to other nonlinear
evaluation equations of any order with the help of symbolic computation (Math-
ematica or Matlab, Maple, etc.). The technique is a straightforward solution to
�nd a closed form. The tanh strength lies in its ease of use and the possibility
of using it as a tool to acquire approximate solutions.
For �nding some better result in tanh or tan method, we use the Extended
tanh method. In this paper by using this method, we �nd some more solutions
besides tan method for the Dodd�Bullough�Mikhailov equation.
In addition we used Sech method �nding the Dodd�Bullough�Mikhailov equa-
tion�s solution. The Sech method is useful and simple method to solve nonlinear
equation. These results could be used as a starting point for other numerical
procedures to achieve much better results.
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