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Abstract. Using �xed point theory, B. Brosowski [Mathematica (Cluj) 11(1969),
195-220] proved that if T is a nonexpansive linear operator on a normed linear
space X, C a T -invariant subset of X and x a T -invariant point, then the
set PC(x) of best C-approximant to x contains a T -invariant point if PC(x)
is non-empty, compact and convex. Subsequently, many generalizations of the
Brosowski�s result have appeared. In this paper, we also prove some extensions
of the results of Brosowski and others for quasi-nonexpansive mappings when
the underlying spaces are metric linear spaces or convex metric spaces.
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1.Introduction and Preliminaries

Using �xed point theory, Meinardus [8] and Brosowski [2] esdtablished some
interesting results on invariant approximation for nonexpansive mappings in
normed linear spaces. Various generalizations of their results were later obtained
by other authors (see e.g. [6] and [9]). The present paper is also a step in
the same direction. We also prove some extensions of their results for quasi-
nonexpansive mappings when the underlying spaces are metric linear spaces or
convex metric spaces. Our results contain as a special case some of the results
proved in [1], [5], [9] and [10].
To start with, we give some basic de�nitions:
Let (X; d) be a metric space. A mapping T : X ! X is said to be nonexpan-
sive on X if d(Tx; Ty) � d(x; y) for all x; y 2 X. A point x 2 X is said to be a



�xed point of the mapping T if Tx = x. Suppose F (T ) denotes the set of �xed
points of T in X. A mapping T : X ! X is said to be quasi-nonexpansive
on X if F (T ) 6= ; and d(Tx; p) � d(x; p) for all x 2 X and p 2 F (T ).
A nonexpansive mapping T on X with F (T ) 6= ; is quasi-nonexpansive, but
not conversely. A linear quasi-nonexpansive mapping on a Banach space is
nonexpansive. But there exist (see e.g. [11], p.27) continuous and discontinuous
nonlinear quasi-nonexpansive mappings that are not nonexpansive.
For a non-empty subset C of X and x 2 X, an element y 2 C is said to be a
best approximation to x or a best C-approximant to x if

d(x; y) = d(x;C) � inffd(x; z) : z 2 Cg:

The set of all such y 2 C is denoted by PC(x). The set-valued mapping
PC : X ! 2C � collection of all subsets of C, is called metric projec-
tion. A sequence < yn > in C is called a minimizing sequence for x if
limn!1 d(x; yn) = d(x;C). The set C is said to be approximatively compact
if for each x 2 X, every minimizing sequence < yn > in C has a subsequence
< yni > converging to an element of C.
A subset C of a linear space L is said to be convex if �x+ (1� �)y 2 C for all
x; y 2 C and � 2 [0; 1].
The following proposition will be used in the sequel:

Proposition 1. Let C be a non-empty approximatively compact subset of a
metric space (X; d), x 2 X and PC be the metric projection of X onto C de�ned
by PC(x) = fy 2 C : d(x; y) = d(x;C)g. Then PC(x) is a non-empty compact
subset of C.

Proof. By the de�nition of d(x;C), there is a sequence < yn > in C such that

(1) lim d(x; yn) = d(x;C)

i.e. < yn > is a minimizing sequence for x in C. Since C is approximatively
compact, there is a subsequence < yni > such that < yni >! y 2 C. Consider

d(x; y) = d(x; lim yni)

= lim d(x; yni)

= d(x;C); by (1)

i.e. y 2 PC(x) and so PC(x) is non-empty.
Now we show that PC(x) is compact. Let < yn > be a sequence in PC(x) i.e.
d(x; yn) = d(x;C) for all n and so lim d(x; yn) = d(x;C) i.e. (1) is satis�ed and
so proceeding as above, we get a subsequence < yni > of < yn > converging to
an element y 2 PC(x). This shows that PC(x) is compact.

Note. It can be easily seen (see Singer [13], p.380) that PC(x) is always a
bounded set and is closed if C is closed.
Brosowski [2] proved the following result on invariant approximation:



Theorem 1. Let T be a non-expansive linear operator on a normed linear space
X, C a T -invariant subset of X and x a point of F (T ). If PC(x) is non-empty,
compact and convex, then PC(x) \ F (T ) 6= ;.
Since a non-expansive mapping with F (T ) 6= ; is quasi-nonexpansive and con-
tinuous, we have the following extension of Theorem 1 in metric linear spaces:

Theorem 2. Let T be a continuous quasi-nonexpansive mapping on a locally
convex metric linear space (X; d). Let C be a T -invariant subset of X and x a
point of F (T ). If PC(x) is non-empty, compact and convex, then PC(x)\F (T ) 6=
;.

Proof. Let y 2 PC(x). Since d(x; Ty) = d (Tx; Ty) � d(x; y) = d(x;C)),
Ty 2 PC(x) as C is T -invariant. Thus T : PC(x) ! PC(x). Since PC(x) is
a compact convex subset of a locally convex metric linear space, by Schauder-
Tychno¤theorem (see Theorem 2.3 [7]), T has a �xed point in PC(x) i.e. PC(x)\
F (T ) 6= ;.
Combining Theorem 2 and Proposition 1, we have:

Corollary 1. Let T be a continuous quasi-nonexpansive mapping on a locally
convex metric linear space (X; d) and C an approximatively compact T -invariant
subset of X. Let x be a point of F (T ) and PC(x) a convex set. Then PC(x) \
F (T ) 6= ;.
Since every normed linear space is a locally convex metric linear space, we have:

Corollary 2 (Corollary 2.5 [5]). Let X be a normed linear space and C an
approximatively compact subset of X. If f is a nonexpansive mapping which
has a �xed point x in X and the set PC(x) is convex, then f has a �xed point
in C which is also an element of best approximation of x from C.
Since a quasi-nonexpansive mapping is continuous and for a continuous mapping
T , T (PC(x)) is compact if PC(x) is compact, we have another extension of
Theorem 1.

Theorem 3. Let T be a quasi-nonexpansive mapping on a locally convex metric
linear space (X; d). Let C be a T -invariant subset of X and x a point of F (T ).
If PC(x) is a non-empty, closed convex set in X and T is such that T (PC(x)) is
contained in a compact set, then PC(x) \ F (T ) 6= ;.

Proof. Since T is quasi-nonexpansive, proceeding as in Theorem 2 we obtain,
T : PC(x) ! PC(x). Since PC(x) is a closed convex set and T (PC(x)) is
contained in a compact set, T has a �xed point in PC(x) (Theorem 2.1 (b) [3])
i.e. PC(x) \ F (T ) 6= ;.

Remarks. A metric linear space (X; d) is said to be convex if d(�x+(1��)y; z)
for every x; y; z 2 X and 0 � � � 1. Since for convex metric linear spaces
PC(x) � @C \C (see [12]), for such spaces one can assume in Theorems 2 and 3



that T : @C ! C instead of C is T -invariant as the only use made of T : C ! C
is to prove that T : PC(x)! PC(x).
Before proving some more extensions of Theorem 1, we recall a few de�nitions.
For a metric space (X; d), a mapping W : X �X � [0; 1] ! X is said to be a
convex structure on X if for all x; y 2 X and � 2 [0; 1], we have

d(u;W (x; y; �)) � �d(u; x) + (1� �)d(u; y)

for all u 2 X. The metric space (X; d) together with a convex structure is called
a convex metric space [14].
A convex metric space (X; d) is said to satisfy Property (I) [4] if for all x; y 2 X
and � 2 [0; 1], d(W (x; p; �);W (y; p; �)) � �d(x; y), where p is arbitrary but �xed
point of X.
A subset C of a convex metric space (X; d) is said to be a convex set [14]
if W (x; y; �) 2 C for all x; y 2 C and � 2 [0; 1]. The set C is said to be
starshaped [4] if there exists p 2 C such that W (x; p; �) 2 C for all x 2 C and
� 2 [0; 1].
A normed linear space and each of its convex subsets are simple examples of
convex metric spaces which are not normed linear spaces (see [4]). Property (I)
is always satis�ed in a normed linear space.
We have the following extension of Theorem 1 in convex metric spaces:

Theorem 4. Let T be a quasi-nonexpansive mapping on a convex metric space
(X; d) satisfying Property (I), C a T -invariant subset of X and x a point of
F (T ). If PC(x) is non-empty, compact and starshaped, and T is nonexpansive
on PC(x), then PC(x) \ F (T ) 6= ;.

Proof. Since T is quasi-nonexpansive, as proved in Theorem 2, T : PC(x) !
PC(x). Since PC(x) is non-empty compact and starshaped, and T : PC(x) !
PC(x) is nonexpansive, T has a �xed point in PC(x) (Theorem 3.4 [4]) and so
PC(x) \ F (T ) 6= ;.
Since every normed linear space is a convex metric space with Property (I), we
have:

Corollary 3 (Theorem [10]). Let T be a nonexpansive operator on a normed
linear space X. Let C be a T -invariant subset of X and x a T -invariant point.
If PC(x) is non-empty, compact and starshaped, then PC(x) \ F (T ) 6= ;.
Using Proposition 1, we have:

Theorem 5. Let T be a quasi-nonexpansive mapping on a convex metric space
(X; d) satisfying Property (I) and C a T -invariant approximatively compact
subset of X. Let x be a point of F (T ) and PC(x) a starshaped set. If T is
nonexpansive on PC(x), then PC(x) \ F (T ) 6= ;.
Since every normed linear space is a convex metric space satisfying Property
(I), we have:



Corollary 4 (Theorem 5 [9]). Let T be a quasi-nonexpansive operator on a
normed linear space X and C an approximatively compact T -invariant subset of
X. Let x be a point of F (T ) and PC(x) a starshaped set. If T is nonexpansive
on PC(x), then PC(x) \ F (T ) 6= ;.
To obtain another extension of Theorem 1, we need the following:

Lemma 1. Let (X; d) be a metric space and T : X ! X a quasi-nonexpansive
mapping with a �xed point u 2 X. If C is a closed T -invariant subset of X
and the restriction T=C is a compact mapping, then the set PC(u) of best
approximations is non-empty.
This result was proved in [6]-Theorem 3 for nonexpansive mapping T : X !
X and it can be seen that the proof is valid when the mapping is quasi-
nonexpansive.

Lemma 2(Theorem 3 [1]). Let X be a convex metric space satisfying Prop-
erty (I) and E a closed and starshaped subset of X. If T is a nonexpansive self
mapping on E and closure of T (E) is compact then T has a �xed point in E.
Using Lemmas 1 and 2, we have the following generalization of Theorem 1 for
convex metric spaces:

Theorem 6. Let T be a quasi-nonexpansive mapping on a convex metric space
(X; d) satisfying Property (I). Let C be a closed T -invariant subset of X with
T=C compact and x a T -invariant point. If T is nonexpansive on PC(x) and
PC(x) is a starshaped set, then PC(x) \ F (T ) 6= ;.

Proof. By Lemma 1, PC(x) is non-empty. We show that PC(x) is T -invariant.
Let r = d(x;C) and y 2 PC(x). Then

r � d(x; Ty) as y 2 C ) Ty 2 C
� d(x; y) as T is quasi-nonexpansive

= r:

Therefore d(x; Ty) = r and so Ty 2 PC(x). This proves that T : PC(x) !
PC(x).
If PC(x) is a singleton, then PC(x) = fyg and so Ty = y i.e. the result is proved
in this case. So, suppose PC(x) contains more than one point. Since C is closed,
PC(x) is closed. Also PC(x) is always bounded. Since T=C is compact, T (PC(x))
is compact. Since PC(x) is starshaped and T : PC(x)! PC(x) is nonexpansive,
T has a �xed point in PC(x) by Lemma 2 and so PC(x) \ F (T ) 6= ;.
Since every convex set is starshaped, we get:

Corollary 5 (Theorem 10 [1]). Let (X; d) be a convex metric space satisfying
Property (I) and T a nonexpansive mapping onX. Let C be a closed T -invariant
subset ofX with T=C compact and x a T -invariant point. If PC(x) is non-empty,
convex and compact, then it contains a T -invariant point.



Remarks. Since in a convex metric space, PC(x) � @C \ C, the condition �C
is T -invariant�in Theorems 3 to 5 can be weakened to T : @C ! C as the only
use made of T : C ! C is to prove that T : PC(x)! PC(x).
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